Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10464 publications
Matryoshka Model Learning for Improved Elastic Student Models
Cho-Jui Hsieh
Chetan Verma
Aditya Srinivas Timmaraju
Inderjit Dhillon
Xin Liu
Wen Chen
Ngot Bui
Yang Zhang
2025
Preview abstract
Production machine learning models in the industry are often devel-oped with a primary focus on maximizing model quality. However,these models must ultimately operate within the resource con-straints of their serving infrastructure, including limitations on com-pute, memory and bandwidth. The rapid evolution of serving hard-ware, particularly with advancements in accelerator technology,necessitates periodic retraining to leverage newer, more efficientinfrastructure. This cyclical retraining process is resource-intensive,demanding significant model development time and incurring sub-stantial training costs. This challenge is further amplified by thetrend towards increasingly complex models, which inherently re-quire greater computational resources for training and deployment.While prior work has explored techniques like supernet sub-modelextraction to address training efficiency, a critical gap remains: theefficient generation of a spectrum of high-quality models froman existing production model, a common requirement in diverseindustrial applications. To bridge this gap, we introduce a novel ap-proach leveraging a "Teaching Assistant" (TA) model, derived froma given production model (referred to as the Student model). Wedemonstrate that through co-training the Student and TA modelswith Matryoshka structure while using online distillation, we notonly enhance the Student model’s performance but also enable theflexible creation of a model family offering a compelling trade-offbetween model quality and model size.
View details
MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
Nilay Pande
Sahiti Yerramilli
Jayant Tamarapalli
Rynaa Grover
(2025)
Preview abstract
A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities.
View details
Preview abstract
This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques.
View details
Fast Tensor Completion via Approximate Richardson Iteration
Mehrdad Ghadiri
Yunbum Kook
Ali Jadbabaie
Proceedings of the 42nd International Conference on Machine Learning (2025)
Preview abstract
We study tensor completion (TC) through the lens of low-rank tensor decomposition (TD). Many TD algorithms use fast alternating minimization methods, which solve highly structured linear regression problems at each step (e.g., for CP, Tucker, and tensor-train decompositions). However, such algebraic structure is lost in TC regression problems, making direct extensions unclear. To address this, we propose a lifting approach that approximately solves TC regression problems using structured TD regression algorithms as blackbox subroutines, enabling sublinear-time methods. We theoretically analyze the convergence rate of our approximate Richardson iteration based algorithm, and we demonstrate on real-world tensors that its running time can be 100x faster than direct methods for CP completion.
View details
Databases in the Era of Memory-Centric Computing
Yannis Chronis
Anastasia Ailamaki
Lawrence Benson
Helena Caminal
Jana Gičeva
Eric Seldar
Lisa Wu Wills
2025
Preview abstract
The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud.
View details
Preview abstract
Cardinality sketches are compact data structures that efficiently estimate the number of distinct elements across multiple queries while minimizing storage, communication, and computational costs. However, recent research has shown that these sketches can fail under adaptively chosen queries, breaking down after approximately $\tilde{O}(k^2)$ queries, where $k$ is the sketch size. In this work, we overcome this quadratic barrier by designing robust estimators with fine-grained guarantees. Specifically, our constructions can handle an exponential number of adaptive queries, provided that each element participates in at most $\tilde{O}(k^2)$ queries. This effectively shifts the quadratic barrier from the total number of queries to the number of queries sharing the same element, which can be significantly smaller. Beyond cardinality sketches, our approach expands the toolkit for robust algorithm design.
View details
Fine-grained Measurement of Vehicle Delay Fairness
Eliav Buchnik
Tom Kalvari
Jack Haddad
Dan Karliner
Danny Veikherman
Ron Tsibulsky
Shai Ferster
Ori Rottenstreich
2025
Preview abstract
Optimizing signal timing in traffic lights helps to improve traffic flow and reduce emissions through reducing delays. At intersections, vehicles from different movements observe different delays impacted by the traffic light plan. This paper analyzes delay fairness among various vehicles at intersections. We refer to three cities: Rio de Janeiro, Hamburg and Seattle with a total number of over 5100 intersections. We present an intuitive methodology to compute delay fairness based on Gini index, a common fairness measure in economics. We evaluate the fairness based on real traffic data and provide insights on the relationship of fairness with day hours and traffic demand. We also examine real changes in traffic light plans that occurred in practice to check whether improving delay is often aligned with increasing fairness.
View details
TOKENFORMER: Rethinking Transformers Scaling with Tokenized Model Parameters
Haiyang Wang
Fan Yue
Jan Eric Lenssen
Liwei Wang
Bernt Schiele
2025
Preview abstract
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on fixed parameters within linear projections, especially when architectural modifications (e.g., channel dimensions) are introduced. Each scaling iteration typically requires retraining the entire model from the beginning, leading to suboptimal utilization of computational resources. To overcome this limitation, we introduce TokenFormer, a naturally scalable architecture that leverages the attention mechanism exclusively for computations among input tokens and interactions between input tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformer with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This innovative approach allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124 million to 1.4 billion parameters by incrementally adding new key-value parameters, achieving performance comparable to models trained from scratch while greatly reducing training costs. Code and models will be publicly available.
View details
Preview abstract
Users of routing services like Apple Maps, Google Maps, and Waze frequently wonder why a given route is proposed. This question particularly arises when dynamic conditions like traffic and road closures cause unusual routes to be proposed. While many such dynamic conditions may exist in a road network at any time, only a small fraction of those conditions are typically relevant to a given user's route. In this work, we give a simple algorithm that identifies a small set of traffic-laden road segments that answer the following question: Which traffic conditions cause a particular shortest traffic-aware route to differ from the shortest traffic-free route? We theoretically and experimentally show that our algorithm generates small and interpretable answers to this question.
View details
Mufu: Multilingual Fused Learning for Low- Resource Translation with LLM
Zheng Lim
Honglin Yu
Trevor Cohn
International Conference on Learning Representations (ICLR) 2025
Preview abstract
Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details
Preview abstract
In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Tajinder Gadh
Richard Allen
Alexei Barski
Robert Bosch
Patrick Robertson
Youngmin Cho
Nivetha Thiruverahan
Aman Raj
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Quartic Quantum Speedups for Planted Inference Problems
Alexander Schmidhuber
Ryan O'Donnell
Physical Review X, 15 (2025), pp. 021077
Preview abstract
We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
View details
Performance of a Deep Learning Diabetic Retinopathy Algorithm in India
Arthur Brant
Xiang Yin
Lu Yang
Divleen Jeji
Sunny Virmani
Anchintha Meenu
Naresh Babu Kannan
Florence Thng
Lily Peng
Ramasamy Kim
JAMA Network Open (2025)
Preview abstract
Importance: While prospective studies have investigated the accuracy of artificial intelligence (AI) for detection of diabetic retinopathy (DR) and diabetic macular edema (DME), to date, little published data exist on the clinical performance of these algorithms.
Objective: To evaluate the clinical performance of an automated retinal disease assessment (ARDA) algorithm in the postdeployment setting at Aravind Eye Hospital in India.
Design, Setting, and Participants: This cross-sectional analysis involved an approximate 1% sample of fundus photographs from patients screened using ARDA. Images were graded via adjudication by US ophthalmologists for DR and DME, and ARDA’s output was compared against the adjudicated grades at 45 sites in Southern India. Patients were randomly selected between January 1, 2019, and July 31, 2023.
Main Outcomes and Measures: Primary analyses were the sensitivity and specificity of ARDA for severe nonproliferative DR (NPDR) or proliferative DR (PDR). Secondary analyses focused on sensitivity and specificity for sight-threatening DR (STDR) (DME or severe NPDR or PDR).
Results: Among the 4537 patients with 4537 images with adjudicated grades, mean (SD) age was 55.2 (11.9) years and 2272 (50.1%) were male. Among the 3941 patients with gradable photographs, 683 (17.3%) had any DR, 146 (3.7%) had severe NPDR or PDR, 109 (2.8%) had PDR, and 398 (10.1%) had STDR. ARDA’s sensitivity and specificity for severe NPDR or PDR were 97.0% (95% CI, 92.6%-99.2%) and 96.4% (95% CI, 95.7%-97.0%), respectively. Positive predictive value (PPV) was 50.7% and negative predictive value (NPV) was 99.9%. The clinically important miss rate for severe NPDR or PDR was 0% (eg, some patients with severe NPDR or PDR were interpreted as having moderate DR and referred to clinic). ARDA’s sensitivity for STDR was 95.9% (95% CI, 93.0%-97.4%) and specificity was 94.9% (95% CI, 94.1%-95.7%); PPV and NPV were 67.9% and 99.5%, respectively.
Conclusions and Relevance: In this cross-sectional study investigating the clinical performance of ARDA, sensitivity and specificity for severe NPDR and PDR exceeded 96% and caught 100% of patients with severe NPDR and PDR for ophthalmology referral. This preliminary large-scale postmarketing report of the performance of ARDA after screening 600 000 patients in India underscores the importance of monitoring and publication an algorithm's clinical performance, consistent with recommendations by regulatory bodies.
View details