Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10821 publications
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    mmMUSE: An mmWave-based Motion-resilient Universal Speech Enhancement System
    Chenming He
    Yanyong Zhang
    Kai Wang
    Dequan Wang
    Lingyu Wang
    the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), ACM (2026) (to appear)
    Preview abstract Voice-based smart systems can greatly enhance user experiences by allowing higher-quality interactions through better voice perception. Speech enhancement can benefit such systems by isolating noise from speech. Recently, integrating millimeter-wave (mmWave) with audio for speech perception has gained increasing attention due to microphones' limitations in noisy environments. However, mmWave-based vocal extraction is severely affected by motion, which disperses vocal signals across ranges and introduces distortions. In this paper, we propose an mmWave-based motion-resilient universal speech enhancement system called mmMUSE, which fuses mmWave and audio signals. To mitigate motion interference, we develop a Doppler-based method for motion-robust vocal signal extraction. Moreover, by introducing the Vocal-Noise-Ratio metric to assess the prominence of vocal signals from mmWave, we achieve real-time voice activity detection that gains 3.81 dB of SISDR in noisy speeches. Additionally, we design a two-stage complex-valued network that includes an attention-based fusion network for cross-modal complementing and a time-frequency masking network for correcting amplitude and phase of speech to isolate noises. Using mmWave and audio datasets from 46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models, achieving an average SISDR improvement of 3.12 dB. Additionally, mmMUSE achieves SISDR improvements of 16.51 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments involving intense noise, extensive motion, multiple speakers, and various obstructive materials, respectively. Finally, we evaluate mmMUSE in real-world scenarios including running, public spaces, and driving, maintaining a word error rate (WER) below 10%. View details
    Preview abstract Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response. View details
    Preview abstract The rapid emergence of generative AI models and AI powered systems has surfaced a variety of concerns around responsibility, safety, and inclusion. Some of these concerns address specific vulnerable communities, including people with disabilities. At the same time, these systems may introduce harms upon disabled users that do not fit neatly into existing accessibility classifications, and may not be addressed by current accessibility practices. In this paper, we investigate how stakeholders across a variety of job types are encountering and addressing potentially negative impacts of AI on users with disabilities. Through interviews with 25 practitioners, we identify emerging challenges related to AI’s impact on disabled users, systemic obstacles that contribute to problems, and effective strategies for impacting change. Based on these findings, we offer suggestions for improving existing processes for creating AI-powered systems and supporting practitioners in developing skills to address these emerging challenges. View details
    Preview abstract We study the problem of learning the optimal item pricing for a unit-demand buyer with independent item values, and we have query access to the underlying value distributions. We consider two common query model in the literature: the “sample complexity” model where we can obtain a sample of each item value, and the “pricing query complexity” model where we can set a price to each item and obtain a binary signal on whether the sampled value of the item is greater than our proposed price. In this work we give nearly tight sample complexity and pricing query complexity of the problem. View details
    Ransomware over Modern Web Browsers: A Novel Strain and A New Defense Mechanism
    Harun Oz
    Ahmet Aris
    Leonardo Babun
    Selcuk Uluagac
    Abbas Acar
    ACM Transactions on the Web (2025)
    Preview abstract Ransomware is an increasingly prevalent form of malware targeting end-users, governments, and businesses. As it has evolved, adversaries added new capabilities to their arsenal. Throughout the ransomware evolution, the adversaries propose a next-generation browser-based ransomware, RøB, that performs its malicious actions via emerging web technologies, File System Access API (FSA) and WebAssembly (Wasm). RøB uses this API through the victims’ browsers; hence, it does not require the victims to download and install malicious binaries. We performed extensive evaluations with 3 different OSs, 23 file formats, 29 distinct directories, 5 cloud providers, and 4 antivirus solutions. Our evaluations show that RøB can encrypt various types of files in the local and cloud-integrated directories, external storage devices, and network-shared folders of victims. Our experiments also reveal that popular cloud solutions, Box Individual and Apple iCloud can be severely affected by RøB. Moreover, we conducted tests with commercial antivirus software such as AVG, Avast, Kaspersky, Malware Bytes that perform sensitive directory and suspicious behavior monitoring against ransomware. We verified that RøB can evade these antivirus software and encrypt victim files. Moreover, existing ransomware detection solutions in the literature also cannot be a remedy against RøB due to its distinct features. Therefore, in this paper, we also propose broguard, a new detection system for RøB-like attacks. broguard monitors the web applications that use the FSA API via function hooking and uses a machine learning classifier to detect RøB-like attacks in real-time without any file loss. Performance evaluations of broguard on a comprehensive dataset show that broguard can detect RøB-like browser-based ransomware attacks with over 99% accuracy and minimal overhead. View details
    Preview abstract Cardinality sketches are compact data structures that efficiently estimate the number of distinct elements across multiple queries while minimizing storage, communication, and computational costs. However, recent research has shown that these sketches can fail under adaptively chosen queries, breaking down after approximately $\tilde{O}(k^2)$ queries, where $k$ is the sketch size. In this work, we overcome this quadratic barrier by designing robust estimators with fine-grained guarantees. Specifically, our constructions can handle an exponential number of adaptive queries, provided that each element participates in at most $\tilde{O}(k^2)$ queries. This effectively shifts the quadratic barrier from the total number of queries to the number of queries sharing the same element, which can be significantly smaller. Beyond cardinality sketches, our approach expands the toolkit for robust algorithm design. View details
    Preview abstract In this paper I describe the performance enchantments I implemented in a quantum-error-correction decoder developed at Google. The decoder is an open-source project and I am documenting the speedups I achieved in this paper. View details
    The vast world of quantum advantage
    Robert Huang
    John Preskill
    Soonwon Choi
    ArXiv (2025)
    Preview abstract The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive. View details
    Bridging Sign and Spoken Languages: Pseudo GlossGeneration for Sign Language Translation
    Trevor Cohn
    Jianyuan Guo
    Advances in Neural Information Processing Systems (NeurIPS) (2025)
    Preview abstract Sign Language Translation (SLT) aims to map sign language videos to spoken language text. A common approach leverages gloss annotations as an intermediate representation, decomposing SLT into two sub-tasks: video-to-gloss recognition and gloss-to-text translation. While effective, this paradigm relies on expert-annotated gloss labels, which are costly and increasingly unavailable in many datasets, limiting scalability. To address this challenge, we propose a gloss-free pseudo gloss generation framework that eliminates the need for human-annotated glosses while preserving the structured intermediate representation. Specifically, we prompt a Large Language Model (LLM) with example text-gloss pairs to extract potential sign-related gloss words from the text by leveraging its in-context learning capability. To mitigate the inherent misalignment between generated pseudo glosses and sign sequences in the video, we further refine their order by formulating the alignment as a weakly supervised learning problem. With the reordered pseudo-glosses, additional alignment losses such as CTC can be incorporated to enhance supervision. We train our SLT model—comprising a vision encoder and a translator—under a three-stage pipeline, effectively bridging the gap between sign and spoken language. Despite its simplicity, our approach outperforms previous state-of-the-art gloss-free frameworks across three SLT benchmarks and achieves competitive results with gloss-based methods. View details
    Reasoning-SQL: Reinforcement Learning with Partial Rewards for Reasoning-Enhanced Text-to-SQL
    Mohammadreza Pourreza
    Shayan Talaei
    Hailong Li
    Azalia Mirhoseini
    Amin Saberi
    Conference on Language Modeling (COLM) (2025) (to appear)
    Preview abstract Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks. View details
    Randomized Dimensionality Reduction for Euclidean Maximization and Diversity Measures
    Sandeep Silwal
    Benedikt Kolbe
    Shay Sapir
    Jie Gao
    Erik Waingarten
    Chris Schwiegelshohn
    2025
    Preview abstract Randomized dimensionality reduction is a widely-used technique for speeding up large-scale Euclidean optimization problems. In this paper, we study dimension reduction for a variety of maximization problems, including max-matching, max-spanning tree, as well as various measures of computing dataset diversity. For these problems, we show that the effect of dimension reduction is intimately tied to the \emph{doubling dimension} $\lambda_X$ of the underlying dataset $X$---a quantity measuring intrinsic dimensionality of point sets. Specifically, the dimension required is $O(\lambda_X)$, which we also show is necessary for some of these problems. This is in contrast to classical dimension reduction results, whose dependence grow with the dataset size $|X|$. We also provide empirical results validating the quality of solutions found in the projected space, as well as speedups due to dimensionality reduction. View details
    Software development is a team sport
    Jie Chen
    Alison Chang
    Rayven Plaza
    Marie Huber
    Claire Taylor
    IEEE Software (2025)
    Preview abstract In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning. View details
    REGEN: A Dataset and Benchmarks with Natural Language Critiques and Narratives
    Kun Su
    Krishna Sayana
    Hubert Pham
    James Pine
    Yuri Vasilevski
    Raghavendra Vasudeva
    Liam Hebert
    Ambarish Jash
    Anushya Subbiah
    Sukhdeep Sodhi
    (2025)
    Preview abstract This paper introduces a novel dataset REGEN (Reviews Enhanced with GEnerative Narratives), designed to benchmark the conversational capabilities of recommender Large Language Models (LLMs), addressing the limitations of existing datasets that primarily focus on sequential item prediction. REGEN extends the Amazon Product Reviews dataset by inpainting two key natural language features: (1) user critiques, representing user "steering" queries that lead to the selection of a subsequent item, and (2) narratives, rich textual outputs associated with each recommended item taking into account prior context. The narratives include product endorsements, purchase explanations, and summaries of user preferences. Further, we establish an end-to-end modeling benchmark for the task of conversational recommendation, where models are trained to generate both recommendations and corresponding narratives conditioned on user history (items and critiques). For this joint task, we introduce a modeling framework LUMEN (LLM-based Unified Multi-task Model with Critiques, Recommendations, and Narratives) which uses an LLM as a backbone for critiquing, retrieval and generation. We also evaluate the dataset's quality using standard auto-rating techniques and benchmark it by training both traditional and LLM-based recommender models. Our results demonstrate that incorporating critiques enhances recommendation quality by enabling the recommender to learn language understanding and integrate it with recommendation signals. Furthermore, LLMs trained on our dataset effectively generate both recommendations and contextual narratives, achieving performance comparable to state-of-the-art recommenders and language models. View details