Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10192 publications
    PreFix: Optimizing the Performance of Heap-Intensive Applications
    Chaitanya Mamatha Ananda
    Rajiv Gupta
    Han Shen
    CGO 2025: International Symposium on Code Generation and Optimization, Las Vegas, NV, USA (to appear)
    Preview abstract Analyses of heap-intensive applications show that a small fraction of heap objects account for the majority of heap accesses and data cache misses. Prior works like HDS and HALO have shown that allocating hot objects in separate memory regions can improve spatial locality leading to better application performance. However, these techniques are constrained in two primary ways, limiting their gains. First, these techniques have Imperfect Separation, polluting the hot memory region with several cold objects. Second, reordering of objects across allocations is not possible as the original object allocation order is preserved. This paper presents a novel technique that achieves near perfect separation of hot objects via a new context mechanism that efficiently identifies hot objects with high precision. This technique, named PreFix, is based upon Preallocating memory for a Fixed small number of hot objects. The program, guided by profiles, is instrumented to compute context information derived from dynamic object identifiers, that precisely identifies hot object allocations that are then placed at predetermined locations in the preallocated memory. The preallocated memory region for hot objects provides the flexibility to reorder objects across allocations and allows colocation of objects that are part of a hot data stream (HDS), improving spatial locality. The runtime overhead of identifying hot objects is not significant as this optimization is only focused on a small number of static hot allocation sites and dynamic hot objects. While there is an increase in the program’s memory foot-print, it is manageable and can be controlled by limiting the size of the preallocated memory. In addition, PreFix incorporates an object recycling optimization that reuses the same preallocated space to store different objects whose lifetimes are not expected to overlap. Our experiments with 13 heap-intensive applications yields reductions in execution times ranging from 2.77% to 74%. On average PreFix reduces execution time by 21.7% compared to 7.3% by HDS and 14% by HALO. This is due to PreFix’s precision in hot object identification, hot object colocation, and low runtime overhead. View details
    Databases in the Era of Memory-Centric Computing
    Anastasia Ailamaki
    Lawrence Benson
    Helena Caminal
    Jana Gičeva
    Eric Seldar
    Lisa Wu Wills
    Preview abstract The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud. View details
    Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
    Marc Stogaitis
    Youngmin Cho
    Richard Allen
    Patrick Robertson
    Robert Bosch
    Nivetha Thiruverahan
    Alexei Barski
    Tajinder Gadh
    Geophysical Journal International (2025), ggae436
    Preview abstract This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation. View details
    Preview abstract Storage on Android has evolved significantly over the years, with each new Android version introducing changes aimed at enhancing usability, security, and privacy. While these updates typically help with restricting app access to storage through various mechanisms, they may occasionally introduce new complexities and vulnerabilities. A prime example is the introduction of scoped storage in Android 10, which fundamentally changed how apps interact with files. While intended to enhance user privacy by limiting broad access to shared storage, scoped storage has also presented developers with new challenges and potential vulnerabilities to address. However, despite its significance for user privacy and app functionality, no systematic studies have been performed to study Android’s scoped storage at depth from a security perspective. In this paper, we present the first systematic security analysis of the scoped storage mechanism. To this end, we design and implement a testing tool, named ScopeVerif, that relies on differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif takes a list of security properties and checks if there are any file operations that violate any security properties defined in the official Android documentation. Additionally, we conduct a comprehensive analysis across different Android versions as well as a cross-OEM analysis to identify discrepancies in different implementations and their security implications. Our study identifies both known and unknown issues of scoped storage. Our cross-version analysis highlights undocumented changes as well as partially fixed security loopholes across versions. Additionally, we discovered several vulnerabilities in scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and correct behavior, which potentially poses security risks. The affected OEMs and Google have acknowledged our findings and offered us bug bounties in response. View details
    Preview abstract Today’s smartphone interactions are typically designed with one primary preset, accompanied by customization settings that can be manually adjusted. To promote the creation of contextually aware experiences, researchers have highlighted the factors that influence mobile device usage in the ability-based design framework. This paper expands upon existing frameworks and contributes to an empirical understanding of smartphone accessibility. Through a 10-day longitudinal diary study and video interview with 24 individuals who do and do not identify as having a disability, the research also illustrates the reactions of reattempt, adaptation, and avoidance, which were used in response to a lack of smartphone accessibility. Despite experiencing scenarios where accessibility settings could be leveraged, 20 out of 24 participants did not use accessibility settings on their smartphone. A total of 12 out of 24 participants tried accessibility settings on their smartphones, however identifying accessibility was not for them. This work highlights the need to shift current design practices to better serve the accessibility community. View details
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Preview abstract We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods. Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City. View details
    A Reduction from Multi-Parameter to Single-Parameter Bayesian Contract Design
    Matteo Castiglioni
    Junjie Chen
    Minming Li
    Haifeng Xu
    SODA 2025 (to appear)
    Preview abstract The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally productive. The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter. As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case. View details
    Preview abstract We present StreamVC, a streaming voice conversion solution that preserves the content and prosody of any source speech while matching the voice timbre from any target speech. Unlike previous approaches, StreamVC produces the resulting waveform at low latency from the input signal even on a mobile platform, making it applicable to real-time communication scenarios like calls and video conferencing, and addressing use cases such as voice anonymization in these scenarios. Our design leverages the architecture and training strategy of the SoundStream neural audio codec for lightweight high-quality speech synthesis. We demonstrate the feasibility of learning soft speech units causally, as well as the effectiveness of supplying whitened fundamental frequency information to improve pitch stability without leaking the source timbre information. View details
    SAC126 - DNSSEC Delegation Signer (DS) Record Automation
    Internet Corporation for Assigned Names and Numbers (ICANN), ICANN Security and Stability Advisory Committee (SSAC) Reports and Advisories (2024), pp. 39
    Preview abstract The deployment of Domain Name System (DNS) Security Extensions (DNSSEC) has been hindered by a number of obstacles. This report focuses on one: the management of Delegation Signer (DS) records, which connect a child zone’s DNSSEC public key and signatures to the chain of trust provided by its parent zone (e.g., a zone corresponding to a top-level domain). DNSSEC is not simply enabled by signing a delegated domain’s DNS zone with DNSSEC signatures. It is also necessary to configure (and later maintain) appropriate DS records, which involves coordinated actions by the DNS operator, registrant, registrar, and registry. In the case where the domain’s DNS service is operated by the registrar, this process can be reduced to a simple internal operation by the registrar. If the functions are separated, this is not possible. This report is therefore focused on when the domain’s DNS service is not operated by the registrar, but by a third-party DNS operator. In such a scenario, current practice holds the registrant responsible for coordinating DS maintenance. The registrant (or someone appointed by them) needs to first obtain DNSSEC public key parameters from the DNS operator, and convey these parameters to the registrar (potentially via a reseller). The registrar will then need to relay these DNSSEC public key parameters to the registry, who will use them to create and publish the DS record in the parent zone. This process often involves idiosyncratic interfaces for each combination of DNS operator and registrar, requiring a level of engagement and time investment, awareness, and understanding that often do not match with what the registrant knows or expects. The complexity of the process further introduces opportunity for error. This can be alleviated by employing automation for the data exchanges required for DS maintenance so that, when the domain’s DNS service is operated by a third party, registries or registrars can, without human involvement, obtain all information needed for keeping DS records up to date. Various approaches to achieve this are possible, such as a scheme where the registry or registrar actively contacts the Child DNS operator, or vice versa. The different approaches come with different challenges with respect to authentication, timing, and efficiency. The IETF has standardized specifications around the first approach, where the parent pulls information from the Child DNS operator, and operational experience has been gained over recent years. However, some standardization gaps remain (such as to improve efficiency and error handling). In addition, the industry could benefit from further development of best practices in deploying the technology. The SSAC believes that automated DS maintenance should be a goal for the domain name industry. To make this a reality, the SSAC makes several recommendations with the goal to spur industry players and ICANN towards an industry best practice for DNSSEC DS automation. View details
    Preview abstract Google services are powered by the largest network of computers in the world. Site Reliabity Engineers (SRE) make sure that the whole stack is cool: datacenters are safe, well provisionedl; we have fallback mechanims, and data integrity; to making sure we design our stack properly, using the right storage, replication and software trade-offs. Generative AI is a great tool to make us super-effective: having access to tools to generate our most toily configurations, to classify risks and events, to manage large swaths of machines with agents or to automate complex workflows cheaply. This talk will cover the journey that SRE started years ago to become a truly AI-First discipline and the latest advancements in tooling, practices and workflows. View details
    Conformal Risk Control
    Anastasios N. Angelopoulos
    Stephen Bates
    Adam Fisch
    Lihua Lei
    ICLR (2024)
    Preview abstract We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score. View details
    Preview abstract Vortex is an exabyte scale structured storage system built for streaming and batch analytics. It supports high-throughput batch and stream ingestion. For the user, it supports both batch-oriented and stream-based processing on the ingested data. View details
    Preview abstract Image-Text pretraining on a web-scale image caption dataset has become the default recipe for open vocabulary classification and retrieval models thanks to the success of CLIP and its variants. Several works have also used CLIP features for dense prediction tasks and have shown the emergence of open-set abilities. However, the contrastive objective only focuses on image and text alignment and does not incentivise image feature learning for dense prediction tasks. In this work, we propose the simple addition of local-to-global correspondence learning by self-distillation as an additional objective for contrastive pre-training to propose SILC. We show that distilling local image features from an EMA teacher model significantly improves model performance on tasks including classification, retrieval, and especially segmentation. We further show that SILC scales better with the same training duration compared to the baselines. Our improved SILC sets a new state-of-the-art for zero-shot classification, few shot classification, image retrieval, zero-shot segmentation, and open vocabulary segmentation. View details