Michał Januszewski
Authored Publications
Sort By
Multi-Layered Maps of Neuropil with Segmentation Guided Contrastive Learning
Sven Dorkenwald
Daniel R. Berger
Agnes L. Bodor
Forrest Collman
Casey M. Schneider-Mizell
Nuno Maçarico da Costa
Jeff W. Lichtman
Nature Methods (2023)
Preview abstract
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 μm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
View details
SyConn2: dense synaptic connectivity inference for volume electron microscopy
Philipp J. Schubert
Sven Dorkenwald
Jonathan Klimesch
Fabian Svara
Andrei Mancu
Hashir Ahmad
Michale S. Fee
Joergen Kornfeld
Nature Methods, 19 (2022), 1367–1370
Preview abstract
The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing clusters. SyConn2 was tested on connectomic datasets with more than 10 million synapses, provides a web-based visualization interface and makes these data amenable to complex anatomical and neuronal connectivity queries.
View details
Visual recognition of social signals by a tectothalamic neural circuit
Johannes M. Kappel
Dominique Förster
Katja Slangewal
Inbal Shainer
Fabian Svara
Joseph C. Donovan
Shachar Sherman
Herwig Baier
Johannes Larsch
Nature, 608 (2022), 146–152
Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain
Fabian Svara
Dominique Förster
Fumi Kubo
Marco dal Maschio
Philipp Schubert
Jörgen Kornfeld
Adrian Wanner
Winfried Denk
Herwig Baier
Nature Methods, 19 (2022), 1357–1366
Preview abstract
Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.
View details
Denoising-based Image Compression for Connectomics
Alex Shapson-Coe
Richard L. Schalek
Jeff W. Lichtman
bioRxiv (2021)
Preview abstract
Connectomic reconstruction of neural circuits relies on nanometer resolution microscopy which produces on the order of a petabyte of imagery for each cubic millimeter of brain tissue. The cost of storing such data is a significant barrier to broadening the use of connectomic approaches and scaling to even larger volumes. We present an image compression approach that uses machine learning-based denoising and standard image codecs to compress raw electron microscopy imagery of neuropil up to 17-fold with negligible loss of reconstruction accuracy.
View details
A connectomic study of a petascale fragment of human cerebral cortex
Alex Shapson-Coe
Daniel R. Berger
Yuelong Wu
Richard L. Schalek
Shuohong Wang
Neha Karlupia
Sven Dorkenwald
Evelina Sjostedt
Dongil Lee
Luke Bailey
Angerica Fitzmaurice
Rohin Kar
Benjamin Field
Hank Wu
Julian Wagner-Carena
David Aley
Joanna Lau
Zudi Lin
Donglai Wei
Hanspeter Pfister
Adi Peleg
Jeff W. Lichtman
bioRxiv (2021)
Preview abstract
We acquired a rapidly preserved human surgical sample from the temporal lobe of the cerebral cortex. We stained a 1 mm3 volume with heavy metals, embedded it in resin, cut more than 5000 slices at ∼30 nm and imaged these sections using a high-speed multibeam scanning electron microscope. We used computational methods to render the three-dimensional structure containing 57,216 cells, hundreds of millions of neurites and 133.7 million synaptic connections. The 1.4 petabyte electron microscopy volume, the segmented cells, cell parts, blood vessels, myelin, inhibitory and excitatory synapses, and 104 manually proofread cells are available to peruse online. Many interesting and unusual features were evident in this dataset. Glia outnumbered neurons 2:1 and oligodendrocytes were the most common cell type in the volume. Excitatory spiny neurons comprised 69% of the neuronal population, and excitatory synapses also were in the majority (76%). The synaptic drive onto spiny neurons was biased more strongly toward excitation (70%) than was the case for inhibitory interneurons (48%). Despite incompleteness of the automated segmentation caused by split and merge errors, we could automatically generate (and then validate) connections between most of the excitatory and inhibitory neuron types both within and between layers. In studying these neurons we found that deep layer excitatory cell types can be classified into new subsets, based on structural and connectivity differences, and that chandelier interneurons not only innervate excitatory neuron initial segments as previously described, but also each other’s initial segments. Furthermore, among the thousands of weak connections established on each neuron, there exist rarer highly powerful axonal inputs that establish multi-synaptic contacts (up to ∼20 synapses) with target neurons. Our analysis indicates that these strong inputs are specific, and allow small numbers of axons to have an outsized role in the activity of some of their postsynaptic partners.
View details
An anatomical substrate of credit assignment in reinforcement learning
Jorgen Kornfeld
Michale S. Fee
Philipp Schubert
Winfried Denk
bioRxiv (2020)
Preview abstract
How is experience used to improve performance? In both biological and artificial systems,
the optimization of parameters that affect behavior requires a process that determines
whether a parameter affects the outcome and then modifies the parameter accordingly.
Central to the recent bloom of artificial intelligence has been the error-backpropagation
algorithm(Rumelhart, Hinton, and Williams 1986) , which computationally retraces the signal
from the output to each synapse (weight) and allows a large number of parameters to be
optimized in parallel at high learning rates. Biological systems, however, lack an obvious
mechanism to retrace the signal path. Here we show, by combining high-throughput volume
electron microscopy (Denk and Horstmann 2004) and automated connectomic
analysis(Januszewski et al. 2018; Dorkenwald et al. 2017; Schubert et al. 2019) , that the
synaptic architecture of songbird basal ganglia supports a form of local credit assessment
proposed in a model of songbird reinforcement learning (M. S. Fee and Goldberg 2011). We
show that three of this model’s major predictions hold true: first, cortical axons that encode
exploratory motor variability terminate predominantly on dendritic shafts of spiny neurons.
Second, cortical axons that encode timing seek out spines, which enable calcium-based
coincidence detection (R. Yuste and Denk 1995) and appear to be capable of creating and
storing eligibility traces (Yagishita et al. 2014). Third, synapse pairs that presynaptically share
a cortical timing axon and post-synaptically a medium spiny dendrite are substantially more
similar in size than expected, indicating a history of Hebbian plasticity (Bartol et al. 2015;
Kasthuri et al. 2015) . Combined with numerical simulations these data provide strong
evidence for a model of basal ganglia learning with a biologically plausible credit assignment
mechanism.
View details
A connectome and analysis of the adult Drosophila central brain
Louis K Scheffer
C Shan Xu
Zhiyuan Lu
Shin-ya Takemura
Kenneth J Hayworth
Gary B Huang
Kazunori Shinomiya
Stuart Berg
Jody Clements
Philip M Hubbard
William T Katz
Lowell Umayam
Ting Zhao
David Ackerman
John Bogovic
Tom Dolafi
Dagmar Kainmueller
Takashi Kawase
Khaled A Khairy
Larry Lindsey
Nicole Neubarth
Donald J Olbris
Hideo Otsuna
Eric T Trautman
Masayoshi Ito
Alexander S Bates
Jens Goldammer
Tanya Wolff
Robert Svirskas
Philipp Schlegel
Erika Neace
Christopher J Knecht
Chelsea X Alvarado
Dennis A Bailey
Samantha Ballinger
Jolanta A Borycz
Brandon S Canino
Natasha Cheatham
Michael Cook
Marisa Dreher
Octave Duclos
Bryon Eubanks
Kelli Fairbanks
Samantha Finley
Nora Forknall
Audrey Francis
Gary Patrick Hopkins
Emily M Joyce
SungJin Kim
Nicole A Kirk
Julie Kovalyak
Shirley Lauchie
Alanna Lohff
Charli Maldonado
Emily A Manley
Sari McLin
Caroline Mooney
Miatta Ndama
Omotara Ogundeyi
Nneoma Okeoma
Christopher Ordish
Nicholas Padilla
Christopher M Patrick
Tyler Paterson
Elliott E Phillips
Emily M Phillips
Neha Rampally
Caitlin Ribeiro
Madelaine K Robertson
Jon Thomson Rymer
Sean M Ryan
Megan Sammons
Anne K Scott
Ashley L Scott
Aya Shinomiya
Claire Smith
Kelsey Smith
Natalie L Smith
Margaret A Sobeski
Alia Suleiman
Jackie Swift
Satoko Takemura
Iris Talebi
Dorota Tarnogorska
Emily Tenshaw
Temour Tokhi
John J Walsh
Tansy Yang
Jane Anne Horne
Feng Li
Ruchi Parekh
Patricia K Rivlin
Vivek Jayaraman
Marta Costa
Gregory SXE Jefferis
Kei Ito
Stephan Saalfeld
Reed George
Ian Meinertzhagen
Gerald M Rubin
Harald F Hess
Stephen M Plaza
eLife, 9 (2020)
Preview abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
View details
Preview abstract
Recent advances in 3d electron microscopy are yielding ever larger reconstructions of brain tissue, encompassing thousands of individual neurons interconnected by millions of synapses. Interpreting reconstructions at this scale demands advances in the automated analysis of neuronal morphologies, for example by identifying morphological and functional subcompartments within neurons. We present a method that for the first time uses full 3d input (voxels) to automatically classify reconstructed neuron fragments as axon, dendrite, or somal subcompartments. Based on 3d convolutional neural networks, this method achieves a mean f1-score of 0.972, exceeding the previous state of the art of 0.955. The resulting predictions can support multiple analysis and proofreading applications. In particular, we leverage finely localized subcompartment predictions for automated detection and correction of merge errors in the volume reconstruction, successfully detecting 90.6% of inter-class merge errors with a false positive rate of only 2.7%.
View details
Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment
Larry Lindsey
Zhihao Zheng
Alexander Shakeel Bates
István Taisz
Matthew Nichols
Feng Li
Eric Perlman
Gregory S.X.E. Jefferis
Davi Bock
bioRxiv (2019)
Preview abstract
Reconstruction of neural circuitry at single-synapse resolution is an attractive target for improving understanding of the nervous system in health and disease. Serial section transmission electron microscopy (ssTEM) is among the most prolific imaging methods employed in pursuit of such reconstructions. We demonstrate how Flood-Filling Networks (FFNs) can be used to computationally segment a forty-teravoxel whole-brain Drosophila ssTEM volume. To compensate for data irregularities and imperfect global alignment, FFNs were combined with procedures that locally re-align serial sections as well as dynamically adjust and synthesize image content. The proposed approach produced a largely merger-free segmentation of the entire ssTEM Drosophila brain, which we make freely available. As compared to manual tracing using an efficient skeletonization strategy, the segmentation enabled circuit reconstruction and analysis workflows that were an order of magnitude faster.
View details