Fionn Malone
Research Areas
Authored Publications
Sort By
Expressing and Analyzing Quantum Algorithms with Qualtran
Charles Yuan
Anurudh Peduri
arXiv::2409.04643 (2024)
Preview abstract
Quantum computing's transition from theory to reality has spurred the need for novel software tools to manage the increasing complexity, sophistication, toil, and chance for error of quantum algorithm development. We present Qualtran, an open-source library for representing and analyzing quantum algorithms. Using carefully chosen abstractions and data structures, we can simulate and test algorithms, automatically generate information-rich diagrams, and tabulate resource requirements. Qualtran offers a \emph{standard library} of algorithmic building blocks that are essential for modern cost-minimizing compilations. Its capabilities are showcased through the re-analysis of key algorithms in Hamiltonian simulation, chemistry, and cryptography. The resulting architecture-independent resource counts can be forwarded to our implementation of cost models to estimate physical costs like wall-clock time and number of physical qubits assuming a surface-code architecture. Qualtran provides a foundation for explicit constructions and reproducible analysis, fostering greater collaboration within the quantum algorithm development community. We believe tools like Qualtran will accelerate progress in the field.
View details
Stable quantum-correlated many-body states through engineered dissipation
Xiao Mi
Alexios Michailidis
Sara Shabani
Jerome Lloyd
Rajeev Acharya
Igor Aleiner
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Charina Chou
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Alejo Grajales Dau
Dripto Debroy
Agustin Di Paolo
ILYA Drozdov
Andrew Dunsworth
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Brooks Foxen
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Kostyantyn Kechedzhi
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Orion Martin
Amanda Mieszala
Shirin Montazeri
Alexis Morvan
Ramis Movassagh
Wojtek Mruczkiewicz
Charles Neill
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Alex Opremcak
Andre Petukhov
Rebecca Potter
Leonid Pryadko
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Dmitry Abanin
Science, 383 (2024), pp. 1332-1337
Preview abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
View details
Quantum Computation of Stopping power for Inertial Fusion Target Design
Dominic Berry
Alina Kononov
Alec White
Joonho Lee
Andrew Baczewski
Proceedings of the National Academy of Sciences, 121 (2024), e2317772121
Preview abstract
Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it - one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with a novel implementation of a high order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with
roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450.
View details
Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals
Dominic Berry
Alec White
Eugene DePrince III
Sabrina Sicolo
Michael Kuehn
Michael Kaicher
Joonho Lee
PRX Quantum, 4 (2023), pp. 040303
Preview abstract
The simulation of chemistry is among the most promising applications of quantum computing. However, most prior work exploring algorithms for block encoding, time evolving, and sampling in the eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or has required a large number of plane-wave basis functions. In this work, we extend methods for quantum simulation with Bloch orbitals constructed from symmetry-adapted atom-centered orbitals so that one can model periodic ab initio Hamiltonians using only a modest number of basis functions. We focus on adapting existing algorithms based on combining qubitization with tensor factorizations of the Coulomb operator. Significant modifications of those algorithms are required to obtain an asymptotic speedup leveraging translational (or, more broadly, Abelian) symmetries. We implement block encodings using known tensor factorizations and a new Bloch orbital form of tensor hypercontraction. Finally, we estimate the resources required to deploy our algorithms to classically challenging model materials relevant to the chemistry of lithium nickel oxide battery cathodes within the surface code. We find that even with these improvements, the quantum runtime of these algorithms is on the order of thousands of days and further algorithmic improvements are required to make realistic quantum simulation of materials practical.
View details
Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
Thomas E O'Brien
Gian-Luca R. Anselmetti
Fotios Gkritsis
Vincent Elfving
Stefano Polla
William J. Huggins
Oumarou Oumarou
Kostyantyn Kechedzhi
Dmitry Abanin
Rajeev Acharya
Igor Aleiner
Richard Ross Allen
Trond Ikdahl Andersen
Kyle Anderson
Markus Ansmann
Frank Carlton Arute
Kunal Arya
Juan Atalaya
Michael Blythe Broughton
Bob Benjamin Buckley
Alexandre Bourassa
Leon Brill
Tim Burger
Nicholas Bushnell
Jimmy Chen
Yu Chen
Benjamin Chiaro
Desmond Chun Fung Chik
Josh Godfrey Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Ilya Drozdov
Andrew Dunsworth
Daniel Eppens
Lara Faoro
Edward Farhi
Reza Fatemi
Ebrahim Forati
Brooks Riley Foxen
William Giang
Dar Gilboa
Alejandro Grajales Dau
Steve Habegger
Michael C. Hamilton
Sean Harrington
Jeremy Patterson Hilton
Markus Rudolf Hoffmann
Trent Huang
Ashley Anne Huff
Sergei Isakov
Justin Thomas Iveland
Cody Jones
Pavol Juhas
Marika Kieferova
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily MeeKit Laws
Joonho Lee
Kenny Lee
Alexander T. Lill
Wayne Liu
Orion Martin
Trevor Johnathan Mccourt
Anthony Megrant
Xiao Mi
Masoud Mohseni
Shirin Montazeri
Alexis Morvan
Ramis Movassagh
Wojtek Mruczkiewicz
Charles Neill
Ani Nersisyan
Michael Newman
Jiun How Ng
Murray Nguyen
Alex Opremcak
Andre Gregory Petukhov
Rebecca Potter
Kannan Aryaperumal Sankaragomathi
Christopher Schuster
Mike Shearn
Aaron Shorter
Vladimir Shvarts
Jindra Skruzny
Vadim Smelyanskiy
Clarke Smith
Rolando Diego Somma
Doug Strain
Marco Szalay
Alfredo Torres
Guifre Vidal
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Robert Young
Yaxing Zhang
Ningfeng Zhu
Christian Gogolin
Nature Physics (2023)
Preview abstract
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations.
View details