Felix Yu

Felix Yu

I work on large-scale machine learning at Google. More info can be found at www.felixyu.org.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal area under the ROC curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem—loss aggregation and label aggregation—by characterizing their Bayes-optimal solutions. We show that while both approaches can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify. View details
    Preview abstract In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that BlockRank Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR. View details
    Preview abstract Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal area under the ROC curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem—loss aggregation and label aggregation—by characterizing their Bayes-optimal solutions. We show that while both approaches can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify. View details
    Preview abstract Decoder-based large language models (LLMs) have proven highly versatile, with remarkable successes even on problems ostensibly removed from traditional language generation. One such example is solving regression problems, where the targets are real numbers rather than textual tokens. A common approach to use LLMs on such problems is to perform fine-tuning based on the cross-entropy loss, and use autoregressive sampling at inference time. Another approach relies on fine-tuning a separate predictive head with a suitable loss such as squared error. While each approach has had success, there has been limited study on principled ways of using decoder LLMs for regression. In this work, we compare different prior works under a unified view, and introduce regression-aware fine-tuning(RAFT), a novel approach based on the Bayes-optimal decision rule. We demonstrate how RAFT improves over established baselines on several benchmarks and model families. View details
    Preview abstract Large language models (LLMs) have shown strong results on a range of applications, including regression and scoring tasks. Typically, one obtains outputs from an LLM via autoregressive sampling from the model’s output distribution. We show that this inference strategy can be sub-optimal for common regression and scoring evaluation metrics. As a remedy, we build on prior work on Minimum Bayes Risk decoding, and propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses. We show that our proposal significantly improves over baselines across datasets and models. View details
    Serving Graph Compression for Graph Neural Networks
    Cho-Jui Hsieh
    International Conference on Learning Representations (ICLR) (2023)
    Preview abstract Serving a GNN model in online applications is challenging --- one has to propagate the information from training nodes to testing nodes to achieve the best performance, while storing the whole training set (including training graph and node features) during inference time is prohibitive for most of the real world applications. We tackle this serving space compression problem in the paper, where the goal is to compress the storage requirement for GNN serving. Given a model to be served, the proposed method constructs a small set of virtual representative nodes to replace the original training nodes, so that users just need to replace the original training set by this virtual representative set to reduce the space requirement for serving, without the need of changing the actual GNN model and the forward pass. We carefully analyze the error in the forward pass and derive simple ways to construct the node features and graph of virtual representative nodes to minimize the approximation error. Experimental results demonstrate that the proposed method can significantly reduce the serving space requirement for GNN inference. View details
    Preview abstract This paper reveals a curious observation that modern large-scale machine learning models with Transformer architectures have sparse activation maps. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by ``sparse'' we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels, etc. Moreover, larger Transformers with more layers and higher MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. To probe why sparsity emerges, we design experiments with random labels, random images, and infinite data, and find that sparsity may be due primarily to optimization while has little to do with the properties of training dataset. We discuss how sparsity immediately implies a means for significantly reducing the FLOP count and improving efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that explicitly enforcing an even sparser activation via Top-K thresholding with a small value of k brings a collection of desired but missing properties for Transformers, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence. View details
    A Field Guide to Federated Optimization
    Jianyu Wang
    Zheng Xu
    Gauri Joshi
    Maruan Al-Shedivat
    Galen Andrew
    A. Salman Avestimehr
    Katharine Daly
    Deepesh Data
    Suhas Diggavi
    Hubert Eichner
    Advait Gadhikar
    Antonious M. Girgis
    Filip Hanzely
    Chaoyang He
    Samuel Horvath
    Martin Jaggi
    Tara Javidi
    Satyen Chandrakant Kale
    Sai Praneeth Karimireddy
    Jakub Konečný
    Sanmi Koyejo
    Tian Li
    Peter Richtarik
    Karan Singhal
    Virginia Smith
    Mahdi Soltanolkotabi
    Weikang Song
    Sebastian Stich
    Ameet Talwalkar
    Hongyi Wang
    Blake Woodworth
    Honglin Yuan
    Manzil Zaheer
    Mi Zhang
    Tong Zhang
    Chunxiang (Jake) Zheng
    Chen Zhu
    arxiv (2021)
    Preview abstract Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compatibility with privacy and system requirements, and other constraints that are not primary considerations in other problem settings. This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms through concrete examples and practical implementation, with a focus on conducting effective simulations to infer real-world performance. The goal of this work is not to survey the current literature, but to inspire researchers and practitioners to design federated learning algorithms that can be used in various practical applications. View details
    Preview abstract Negative sampling is a widely adopted technique to enable efficient training in settings with a large number of classes. Typically, negative sampling approaches aim at approximating the value or gradient of the computationally expensive loss function that takes all the negative labels into account. In this work, we study the connection between negative sampling approaches and loss modification techniques for countering label imbalance. We show that different (bias) correction strategies that accompany negative sampling approaches can have unintended consequences on the model's performance on various data sub-populations. We then propose a unified approach to tackle both sampling bias, arising from working with a subset of all negative classes, and labeling bias, which is inherently present in the data due to label-imbalance. Finally, we verify our analysis and demonstrate the utility of our unified approach through empirical evaluation on standard image classification and retrieval benchmarks. View details
    Preview abstract Knowledge distillation is an approach to improve the performance of a student model by using the knowledge of a complex teacher. Despite its success in several deep learning applications, the study of distillation is mostly confined to classification settings. In particular, the use of distillation in top-k ranking settings, where the goal is to rank k most relevant items correctly, remains largely unexplored. In this paper, we study such ranking problems through the lens of distillation. We present a framework for distillation for top-k ranking and establish connections with the existing ranking methods. The core idea of this framework is to preserve the ranking at the top by matching the k largest scores of student and teacher while penalizing large scores for items ranked low by the teacher. Building on our framework, we develop a novel distillation approach, RankDistil, specifically catered towards ranking problems with a large number of items to rank. Finally, we conduct experiments which demonstrate that RankDistil yields benefits over commonly used baselines for ranking problems. View details