Mehryar Mohri

Mehryar Mohri

Mehryar Mohri leads the Learning Theory Team in Google Research. The team has extensive expertise in a variety of areas, including learning theory, statistical learning theory, optimization, decision making under uncertainty, reinforcement learning, and theory and algorithms in general.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Blackwell's celebrated theory measures approachability using the $\ell_2$ (Euclidean) distance. In many applications such as regret minimization, it is often more useful to study approachability under other distance metrics, most commonly the $\ell_\infty$ metric. However, the time and space complexity of the algorithms designed for $\ell_\infty$ approachability depend on the dimension of the space of the vectorial payoffs, which is often prohibitively large. We present a framework for converting high-dimensional $\ell_\infty$ approachability problems to low-dimensional \emph{pseudonorm} approachability problems, thereby resolving such issues. We first show that the $\ell_\infty$ distance between the average payoff and the approachability set can be equivalently defined as a \emph{pseudodistance} between a lower-dimensional average vector payoff and a new convex convex set we define. Next, we develop an algorithmic theory of pseudonorm approachability analogous to previous work norm approachability showing that it can be achieved via online linear optimization (OLO) over a convex set given by the Fenchel dual of the unit pseudonorm ball. We then use that to show, modulo mild normalization assumptions, that there exists an $\ell_\infty$ approachability algorithm whose convergence is independent of the dimension of the original vector payoff. We further show that that algorithm admits a polynomial-time complexity, assuming that the original $\ell_\infty$-distance can be computed efficiently. We also give an $\ell_\infty$ approachability algorithm whose convergence is logarithmic in that dimension using an FTRL algorithm with a maximum-entropy regularizer. Finally, we illustrate the benefits of our framework by applying it to several problems in regret minimization. View details
    Preview abstract There is often a great degree of freedom in the reward design when formulating a task as a reinforcement learning (RL) problem. The choice of reward function has significant impact on the learned policy and how fast the algorithm converges to it. Typically several iterations of specifying and learning with the reward function are necessary to find one that leads to sample-efficient learning of desired behavior. In this work, we instead propose to directly pass multiple alternate reward formulations of the task to the RL agent. We show that natural extensions of action-elimination algorithms to multiple rewards achieve more favorable instance-dependent regret bounds than their single-reward counterparts, both in multi-armed bandits and in tabular Markov decision processes. Specifically our bounds scale for each state-action pair with the inverse of the most favorable gap among all reward functions. This suggests that learning with multiple rewards can indeed be more sample-efficient, as long as the rewards agree on an optimal policy. We further prove that when rewards do not agree on the optimal policy, multi-reward action elimination in multi-armed bandits still learns a policy that is good across all reward functions. View details
    Preview abstract We study repeated two-player games where one of the players, the learner, employs a no-regret learning strategy, while the other, the optimizer, is a rational utility maximizer. We consider general Bayesian games, where the payoffs of both the optimizer and the learner could depend on the type, which is drawn from a publicly known distribution, but revealed privately to the learner. We address the following questions: (a) what is the bare minimum that the optimizer is guaranteed to obtain regardless of the no-regret learning algorithm employed by the learner? (b) are there learning algorithms that cap the optimizer payoff at this minimum? (c) can these generalizations be implemented efficiently? While building this theory of optimizer-learner interactions, we define a new combinatorial notion of regret called polytope swap regret, that could be of independent interest in other settings. View details
    Preview abstract Myopic exploration policies such as epsilon-greedy, softmax, or Gaussian noise fail to explore efficiently in some reinforcement learning tasks and yet, they perform well in many others. In fact, in practice, they are often selected as the top choices, due to their simplicity. But, for what tasks do such policies succeed? Can we give theoretical guarantees for their favorable performance? These crucial questions have been scarcely investigated, despite the prominent practical importance of these policies. This paper presents a theoretical analysis of such policies and provides the first regret and sample-complexity bounds for reinforcement learning with myopic exploration. Our results apply to value-function-based algorithms in episodic MDPs with bounded Bellman-Eluder dimension. We define an exploration-gap quantity, alpha, that captures a structural property of the MDP, the exploration policy and the given value function class. We show that the sample-complexity of myopic exploration scales quadratically with the inverse of this quantity, 1 / alpha^2. We further demonstrate through concrete examples that the exploration gap is indeed favorable in several tasks where myopic exploration succeeds, due to the corresponding dynamics and reward structure. View details
    A Field Guide to Federated Optimization
    Jianyu Wang
    Gauri Joshi
    Maruan Al-Shedivat
    Galen Andrew
    A. Salman Avestimehr
    Katharine Daly
    Deepesh Data
    Suhas Diggavi
    Hubert Eichner
    Advait Gadhikar
    Antonious M. Girgis
    Filip Hanzely
    Chaoyang He
    Samuel Horvath
    Martin Jaggi
    Tara Javidi
    Sai Praneeth Karimireddy
    Jakub Konečný
    Sanmi Koyejo
    Tian Li
    Peter Richtarik
    Karan Singhal
    Virginia Smith
    Mahdi Soltanolkotabi
    Weikang Song
    Sebastian Stich
    Ameet Talwalkar
    Hongyi Wang
    Blake Woodworth
    Honglin Yuan
    Mi Zhang
    Tong Zhang
    Chunxiang (Jake) Zheng
    Chen Zhu
    arxiv (2021)
    Preview abstract Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compatibility with privacy and system requirements, and other constraints that are not primary considerations in other problem settings. This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms through concrete examples and practical implementation, with a focus on conducting effective simulations to infer real-world performance. The goal of this work is not to survey the current literature, but to inspire researchers and practitioners to design federated learning algorithms that can be used in various practical applications. View details
    Preview abstract We study multiple-source domain adaptation, when the learner has access to abundant labeled data from multiple source domains and limited labeled data from the target domain. We analyze existing algorithms and propose an instance-optimal approach based on model selection. We provide efficient algorithms and empirically demonstrate the benefits of our approach. View details
    Preview abstract In distributed learning settings such as federated learning, the training algorithm can be potentially biased towards different clients. Mohri et al. (2019) proposed a domain-agnostic learning algorithm, where the model is optimized for any target distribution formed by a mixture of the client distributions in order to overcome this bias. They further proposed an algorithm for the cross-silo federated learning setting, where the number of clients is small. We consider this problem in the cross-device setting, where the number of clients is much larger. We propose a communication-efficient distributed algorithm called Agnostic Federated Averaging (or AgnosticFedAvg) to minimize the domain-agnostic objective proposed in (Mohri et al., 2019), which is amenable to other private mechanisms such as secure aggregation. We highlight two types of naturally occurring domains in federated learning and argue that AgnosticFedAvg performs well on both. To demonstrate the practical effectiveness of AgnosticFedAvg, we report positive results for large-scale language modeling tasks in both simulation and live experiments, where the latter involves training language models for Spanish virtual keyboard for millions of user devices. View details
    Preview abstract We present a theoretical and algorithmic study of the multiple-source domain adaptation problem in the common scenario where the learner has access only to a limited amount of labeled target data, but where he has at his disposal a large amount of labeled data from multiple source domains. We show that a new family algorithms based on model selection ideas benefit from very favorable guarantees in this scenario and discuss some theoretical obstacles affecting some alternative techniques. We also report the results of several experiments with our algorithms that demonstrate their practical effectiveness in several tasks View details
    Preview abstract There have been many recent advances on provably efficient reinforcement learning in problems with rich observation spaces and general function classes. Unfortunately, common to all such approaches is a realizability assumption, that requires the function class to contain the optimal value function of true MDP model, that holds in hardly any real-world setting. In this work, we consider the more realistic setting of agnostic reinforcement learning with a policy class (that may not contain any near-optimal policy). We provide an algorithm for this setting and prove instance-dependent regret bounds when the MDP has small rank $d$. Our bounds scale exponentially with the rank $d$ in the worst case but importantly are polynomial in the horizon, number of actions and the log number of policies. We further show through a nearly matching lower bound that this dependency on horizon is unavoidable. View details
    Preview abstract Communication cost is often a bottleneck in federated learning and other client-based distributed learning scenarios. To overcome this, several gradient compression and model compression algorithms have been proposed. In this work, we propose an alternative approach whereby an ensemble of pre-trained base predictors is trained via federated learning. This method allows for training a model which may otherwise surpass the communication bandwidth and storage capacity of the clients to be learned with on-device data through federated learning. Motivated by language modeling, we prove the optimality of ensemble methods for density estimation for standard empirical risk minimization and agnostic risk minimization. We provide communication-efficient ensemble algorithms for federated learning, where per-round communication cost is independent of the size of the ensemble. Furthermore, unlike works on gradient compression, our proposed approach reduces the communication cost of both server-to-client and client-to-server communication. View details