Research Areas
Authored Publications
Sort By
UL2: Unifying Language Learning Paradigms
Yi Tay
Xavier Garcia
Jason Wei
Hyung Won Chung
Steven Zheng
Neil Houlsby
ICLR (2023)
Preview abstract
Existing pre-trained models are generally geared towards a particular class of
problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for
pre-training models that are universally effective across datasets and setups. We
begin by disentangling architectural archetypes with pre-training objectives – two
concepts that are commonly conflated. Next, we present a generalized and unified perspective for self-supervision in NLP and show how different pre-training
objectives can be cast as one another and how interpolating between different
objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pretraining objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning
is associated with specific pre-training schemes. We conduct extensive ablative
experiments to compare multiple pre-training objectives and find that our method
pushes the Pareto-frontier by outperforming T5 and/or GPT-like models across
multiple diverse setups. Finally, by scaling our model up to 20B parameters, we
achieve SOTA performance on 50 well-established supervised NLP tasks ranging from language generation (with automated and human evaluation), language
understanding, text classification, question answering, commonsense reasoning,
long text reasoning, structured knowledge grounding and information retrieval.
Our model also achieve strong results at in-context learning, outperforming 175B
GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on oneshot summarization. Finally, we show that UL2 20B works well with chain-ofthought prompting and reasoning tasks, making it an appealing choice for research
into reasoning at a small to medium scale of 20B parameters. We publicly release
Flax-based T5X model checkpoints for the 20B model.
View details
ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking Inference
Cicero Nogueira dos Santos
Yi Tay
ACL: Findings 2022 (2022)
Preview abstract
State-of-the-art neural models typically encode document-query pairs using cross-attention for re-ranking. To this end, models generally utilize an encoder-only (like BERT) paradigm or an encoder-decoder (like T5) approach. These paradigms, however, are not without flaws, i.e., running the model on all query-document pairs at inference-time incurs a significant computational cost. This paper proposes a new training and inference paradigm for re-ranking. We propose to finetune a pretrained encoder-decoder model using in the form of document to query generation. Subsequently, we show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference. This results in significant inference time speedups since the decoder-only architecture only needs to learn to interpret static encoder embeddings during inference. Our experiments show that this new paradigm achieves results that are comparable to the more expensive cross-attention ranking approaches while being up to 6.8X faster. We believe this work paves the way for more efficient neural rankers that leverage large pretrained models.
View details
Charformer: Fast Character Transformers via Gradient-based Subword Tokenization
Yi Tay
Sebastian Ruder
Hyung Won Chung
Cong Yu
ICLR (2022)
Preview abstract
State-of-the-art models in natural language processing rely on separate rigid subword tokenization algorithms, which limit their generalization ability and adaptation to new settings. In this paper, we propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model. To this end, we introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters in a data-driven fashion. Concretely, GBST enumerates candidate subword blocks and learns to score them in a position-wise fashion using a block scoring network. We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level. Via extensive experiments on English GLUE, multilingual, and noisy text datasets, we show that Charformer outperforms a series of competitive byte-level baselines while generally performing on par and sometimes outperforming subword-based models. Additionally, Charformer is fast, improving the speed of both vanilla byte-level and subword-level Transformers by 28%-100% while maintaining competitive quality. We believe this work paves the way for highly performant token-free models that are trained completely end-to-end.
View details
ExT5: Towards Extreme Multi-Task Scaling for Transfer Learning
Vamsi Aribandi
Yi Tay
Jinfeng Rao
Steven Zheng
Jianmo Ni
Sebastian Ruder
ICLR 2022
Preview abstract
Despite the recent success of multi-task learning and transfer learning for natural language processing (NLP), few works have systematically studied the effect of scaling up the number of tasks during pre-training. Towards this goal, this paper introduces ExMix (Extreme Mixture): a massive collection of 107 supervised NLP tasks across diverse domains and task-families. Using ExMix, we study the effect of multi-task pre-training at the largest scale to date, and analyze co-training transfer amongst common families of tasks. Through this analysis, we show that manually curating an ideal set of tasks for multi-task pre-training is not straightforward, and that multi-task scaling can vastly improve models on its own. Finally, we propose ExT5: a model pre-trained using a multi-task objective of self-supervised span denoising and supervised ExMix. Via extensive experiments, we show that ExT5 outperforms strong T5 baselines on SuperGLUE, GEM, Rainbow, Closed-Book QA tasks, and several tasks outside of ExMix. ExT5 also significantly improves sample efficiency while pre-training.
View details
Preview abstract
Self-supervised contrastive representation learning has proved incredibly successful in the vision and natural language domains, enabling state-of-the-art performance with orders of magnitude less labeled data. However, such methods are domain-specific and little has been done to leverage this technique on real-world tabular datasets. We propose SCARF, a simple, widely-applicable technique for contrastive learning, where views are formed by corrupting a random subset of features. When applied to pre-train deep neural networks on the 69 real-world, tabular classification datasets from the OpenML-CC18 benchmark, SCARF not only improves classification accuracy in the fully-supervised setting but does so also in the presence of label noise and in the semi-supervised setting where only a fraction of the available training data is labeled. We show that SCARF complements existing strategies and outperforms alternatives like autoencoders. We conduct comprehensive ablations, detailing the importance of a range of factors.
View details
Preview abstract
In real-world systems, models are frequently updated as more data becomes available, and in addition to achieving high accuracy, the goal is to also maintain a low difference in predictions compared to the base model (i.e. predictive churn). If model retraining results in vastly different behavior, then it could cause negative effects in downstream systems, especially if this churn can be avoided with limited impact on model accuracy. In this paper, we show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn. We then show that distillation performs strongly for low churn training against a number of recent baselines on a wide range of datasets and model architectures, including fully-connected networks, convolutional networks, and transformers.
View details
Confident Adaptive Language Modeling
Adam Fisch
Yi Tay
NeurIPS 2022
Preview abstract
Recent advances in Transformer-based large language models (LLMs) achieved significant performance improvements across many tasks.
These gains come with a drastic increase in the models' size, leading to slow and costly use at inference time.
In practice, however, the series of generations made by LLMs is composed of varying levels of difficulty. While certain predictions truly benefit from the models' full capacity, other continuations are more trivial and can be solved with reduced compute.
In this work, we introduce Confident Adaptive Language Modeling (CALM), a method for dynamically allocating different amounts of compute per example and per generation timestep.
Early exit decoding involves several challenges that we address here, such as: (1) what confidence measure to use; (2) connecting sequence-level constraints to local per-token exit decisions; and (3) attending back to missing hidden representations due to early exits in previous tokens.
Through theoretical analysis and empirical experiments on three diverse generation tasks, we demonstrate the efficacy of our method in reliably reducing compute while maintaining high performance.
View details
Transformer Memory as a Differentiable Search Index
Yi Tay
Jianmo Ni
Zhe Zhao
NeurIPS 2022
Preview abstract
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
View details
Sharpness-Aware Minimization Improves Language Model Generalization
Yi Tay
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (2022), pp. 7360-7371
Preview abstract
The allure of superhuman-level capabilities has led to considerable interest in language models like GPT-3 and T5, wherein the research has, by and large, revolved around new model architectures, training tasks, and loss objectives, along with substantial engineering efforts to scale up model capacity and dataset size. Comparatively little work has been done to improve the generalization of these models through better optimization. In this work, we show that Sharpness-Aware Minimization (SAM), a recently proposed optimization procedure that encourages convergence to flatter minima, can substantially improve the generalization of language models without much computational overhead. We show that SAM is able to boost performance on SuperGLUE, GLUE, Web Questions, Natural Questions, Trivia QA, and TyDiQA, with particularly large gains when training data for these tasks is limited.
View details
Preview abstract
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
View details