Carrie Jun Cai

Carrie Jun Cai

My research aims to make artificial intelligence systems usable to human beings, so that human-AI interactions are more productive, enjoyable, and fair. I believe AI systems should be designed to augment human agency, and thus approach this process by considering the capabilities and limits of human intelligence. Before joining Google, I did my PhD research in the User Interface Design group at MIT, where I built "wait-learning" tools to help people practice desired skills in short chunks while waiting, thereby making use of fleeting moments in the day.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    "We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
    Michael Xieyang Liu
    Frederick Liu
    Alex Fiannaca
    Terry Koo
    In Extended Abstract in ACM CHI Conference on Human Factors in Computing Systems (CHI EA '24), ACM (2024), pp. 9 (to appear)
    Preview abstract Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool. View details
    Generative Agents: Interactive Simulacra of Human Behavior
    Joon Sung Park
    Joseph C. O'Brien
    Percy Liang
    Michael Bernstein
    Proceedings of UIST 2023, ACM (2023)
    Preview abstract Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior. View details
    PromptInfuser: Bringing User Interface Mock-ups to Life with Large Language Model Prompts
    Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery (to appear)
    Preview abstract Large Language Models have enabled novices without machine learning (ML) experience to quickly prototype ML functionalities with prompt programming. This paper investigates incorporating prompt-based prototyping into designing functional user interface (UI) mock-ups. To understand how infusing LLM prompts into UI mock-ups might affect the prototyping process, we conduct a exploratory study with five designers, and find that this capability might significantly speed up creating functional prototypes, inform designers earlier on how their designs will integrate ML, and enable user studies with functional prototypes earlier. From these findings, we built PromptInfuser, a Figma plugin for authoring LLM-infused mock-ups. PromptInfuser introduces two novel LLM-interactions: input-output, which makes content interactive and dynamic, and frame-change, which directs users to different frames depending on their natural language input. From initial observations, we find that PromptInfuser has the potential to transform the design process by tightly integrating UI and AI prototyping in a single interface. View details
    The Prompt Artists
    Stefania Druga
    Alex Fiannaca
    Pedro Vergani
    Chinmay Kulkarni
    Creativity and Cognition 2023 (2023)
    Preview abstract In this paper, we present the results of a study examining the art practices, artwork, and motivations of prolific users of the latest generation of text-to-image models. Through interviews, observations, and a survey, we present a sampling of the artistic styles, and describe the developed community of practice. We find that: 1) the text prompt and resulting image collectively can be considered the art piece (prompts as art), and 2) prompt templates (prompts with “slots” for others to fill in with their own words) are developed to create generative art pieces. We also find that this community’s premium on unique outputs leads to artists seeking specialized vocabulary to produce distinctive art pieces (e.g., by going to architectural blogs), while others look for “glitches” in the model that can turn into artistic styles in their own right. From these findings, we outline specific implications for design. View details
    Programming with a Programming Language: Challenges and Opportunities for Designing Developer Tools for Prompt Programming
    Alex Fiannaca
    Chinmay Kulkarni
    Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (CHI EA ’23), ACM, Hamburg, Germany (2023) (to appear)
    Preview abstract Existing tools for prompt programming provide little support to prompt programmers. Consequently, as prompts become more complex, they can be hard to read, understand, and edit. In this work, we draw on modern integrated development environments for traditional programming to improve the editor experience of prompt programming. We describe methods for understanding the semantically meaningful structure of natural language prompts in the absence of a rigid formal grammars, and demonstrate a range of editor features that can leverage this information to assist prompt programmers. Finally, we relate initial feedback from design probe explorations with a set of domain experts and provide insights to help guide the development of future prompt editors. View details
    Preview abstract Prototyping is notoriously difficult to do with machine learning (ML), but recent advances in large language models may lower the barriers to people prototyping with ML, through the use of natural language prompts. This case study reports on the real-world experiences of industry professionals (e.g. designers, program managers, front-end developers) prototyping new ML-powered feature ideas via prompt-based prototyping. Through interviews with eleven practitioners during a three-week sprint and a workshop, we find that prompt-based prototyping reduced barriers of access by substantially broadening who can prototype with ML, sped up the prototyping process, and grounded communication between collaborators. Yet, it also introduced new challenges, such as the need to reverse-engineer prompt designs, source example data, and debug and evaluate prompt effectiveness. Taken together, this case study provides important implications that lay the groundwork toward a new future of prototyping with ML. View details
    Social Simulacra: Creating Populated Prototypes for Social Computing Systems
    Joon Sung Park
    Lindsay Popowski
    Percy Liang
    Michael S. Bernstein
    Proceedings of UIST 2022, ACM (2022) (to appear)
    Preview abstract Prototyping techniques for social computing systems often recruit small groups to test a design, but many challenges that threaten the norms and moderation standards do not arise until a design achieves a larger scale. Can a designer understand how a social system might behave when later populated, and make adjustments before the system falls prey to such challenges? We introduce social simulacra, a technique enabling early prototyping of social computing systems by generating a breadth of possible social interactions that may emerge when the system is populated. Our implementation of social simulacra translates the designer’s description of a community’s goal, rules, and member personas into a set of posts, replies, and anti-social behaviors; shifts these behaviors appropriately in response to design changes; and enables exploration of "what if?" scenarios where community members or moderators intervene. We contribute techniques for prompting a large language model to generate such social interactions, drawing on the observation that large language models have consumed a wide variety of these behaviors on the public web. In evaluations, we show that participants were often unable to distinguish social simulacra from actual community behavior, and that social computing designers could use them to iterate on their designs. View details
    Preview abstract In this paper, we present a natural language code synthesis tool, GenLine, backed by a large generative language model and a set of task-specific prompts. To understand the user experience of natural language code synthesis with these types of models, we conducted a user study in which participants applied GenLine to two programming tasks. Our results indicate that while natural language code synthesis can sometimes provide a magical experience, participants still faced challenges. In particular, participants felt that they needed to learn the model’s "syntax,'' despite their input being natural language. Participants also faced challenges in debugging model input, and demonstrated a wide range of variability in the scope and specificity of their requests. From these findings, we discuss design implications for future natural language code synthesis tools built using generating language models. View details
    The Design Space of Generative Models
    Jess Scon Holbrook
    Chinmay Kulkarni
    NeurIPS 2022 Human-Centered AI Workshop (2022) (to appear)
    Preview abstract Card et al.’s classic paper "The Design Space of Input Devices" established the value of design spaces as a tool for HCI analysis and invention. We posit that developing design spaces for emerging pre-trained, general AI models is necessary for supporting their integration into human-centered systems and practices. We explore what it means to develop an AI model design space by proposing two design spaces relating to pre-trained AI models: the first considers how HCI can impact pre-trained models (i.e., interfaces for models) and the second considers how pre-trained models can impact HCI (i.e., models as an HCI prototyping material). View details
    Onboarding Materials as Cross-functional Boundary Objects for Developing AI Assistants
    Lauren Wilcox
    Samantha Winter
    Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM (2021) (to appear)
    Preview abstract Deep neural networks (DNNs) routinely achieve state-of-the-art performance in a wide range of tasks. This case study reports on the development of onboarding (i.e., training) materials for a DNN-based medical AI Assistant to aid in the grading of prostate cancer. Specifically, we describe how the process of developing these materials deepened the team's understanding of end-user requirements, leading to changes in the development and assessment of the underlying machine learning model. In this sense, the onboarding materials served as a useful boundary object for a cross-functional team. We also present evidence of the utility of the subsequent onboarding materials by describing which information was found useful by participants in an experimental study. View details