
Alexander Del Toro Barba
Quantum Computing Practice Lead
Research Areas
Authored Publications
Sort By
Stable quantum-correlated many-body states through engineered dissipation
Sara Shabani
Dripto Debroy
Jerome Lloyd
Alexios Michailidis
Andrew Dunsworth
Bill Huggins
Markus Hoffmann
Alexis Morvan
Josh Cogan
Ben Curtin
Guifre Vidal
Bob Buckley
Tom O'Brien
John Mark Kreikebaum
Rajeev Acharya
Joonho Lee
Ningfeng Zhu
Shirin Montazeri
Sergei Isakov
Jamie Yao
Clarke Smith
Rebecca Potter
Sean Harrington
Jeremy Hilton
Paula Heu
Alexei Kitaev
Alex Crook
Fedor Kostritsa
Kim Ming Lau
Dmitry Abanin
Trent Huang
Aaron Shorter
Steve Habegger
Gina Bortoli
Charles Rocque
Vladimir Shvarts
Alfredo Torres
Anthony Megrant
Charles Neill
Michael Hamilton
Dar Gilboa
Lily Laws
Nicholas Bushnell
Ramis Movassagh
Mike Shearn
Wojtek Mruczkiewicz
Desmond Chik
Leonid Pryadko
Xiao Mi
Brooks Foxen
Frank Arute
Alejo Grajales Dau
Yaxing Zhang
Lara Faoro
Alexander Lill
JiunHow Ng
Justin Iveland
Marco Szalay
Orion Martin
Juhwan Yoo
Michael Newman
William Giang
Alex Opremcak
Amanda Mieszala
William Courtney
Andrey Klots
Wayne Liu
Pavel Laptev
Charina Chou
Paul Conner
Rolando Somma
Vadim Smelyanskiy
Benjamin Chiaro
Grayson Young
Tim Burger
ILYA Drozdov
Agustin Di Paolo
Jimmy Chen
Marika Kieferova
Michael Broughton
Negar Saei
Juan Atalaya
Markus Ansmann
Pavol Juhas
Murray Ich Nguyen
Yuri Lensky
Roberto Collins
Élie Genois
Jindra Skruzny
Igor Aleiner
Yu Chen
Reza Fatemi
Leon Brill
Ashley Huff
Doug Strain
Monica Hansen
Noah Shutty
Ebrahim Forati
Dave Landhuis
Kenny Lee
Ping Yeh
Kunal Arya
Henry Schurkus
Cheng Xing
Cody Jones
Edward Farhi
Raja Gosula
Andre Petukhov
Alexander Korotkov
Ani Nersisyan
Christopher Schuster
George Sterling
Kostyantyn Kechedzhi
Trond Andersen
Alexandre Bourassa
Kannan Sankaragomathi
Vinicius Ferreira
Science, 383 (2024), pp. 1332-1337
Preview abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
View details
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Abhishek Rajput
Nathan Wiebe
Robbie King
Vedran Djunko
Casper Gyurik
Joao Basso
Yuan Su
PRX Quantum, 5 (2024), pp. 010319
Preview abstract
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers in persistent homology (a way of characterizing topological features of data sets). Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples for which super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve some seemingly classically intractable instances.
View details
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Tomaž Prosen
Vedika Khemani
Rhine Samajdar
Jesse Hoke
Sarang Gopalakrishnan
Andrew Dunsworth
Bill Huggins
Markus Hoffmann
Alexis Morvan
Josh Cogan
Ben Curtin
Guifre Vidal
Bob Buckley
Tom O'Brien
John Mark Kreikebaum
Rajeev Acharya
Joonho Lee
Ningfeng Zhu
Shirin Montazeri
Sergei Isakov
Jamie Yao
Clarke Smith
Rebecca Potter
Sean Harrington
Jeremy Hilton
Paula Heu
Alexei Kitaev
Alex Crook
Fedor Kostritsa
Kim Ming Lau
Dmitry Abanin
Trent Huang
Aaron Shorter
Steve Habegger
Steven Martin
Gina Bortoli
Seun Omonije
Richard Ross Allen
Charles Rocque
Vladimir Shvarts
Alfredo Torres
Anthony Megrant
Charles Neill
Michael Hamilton
Dar Gilboa
Lily Laws
Nicholas Bushnell
Kyle Anderson
Ramis Movassagh
David Rhodes
Mike Shearn
Wojtek Mruczkiewicz
Desmond Chik
Leonid Pryadko
Xiao Mi
Brooks Foxen
Frank Arute
Alejo Grajales Dau
Yaxing Zhang
Lara Faoro
Alexander Lill
Gordon Hill
JiunHow Ng
Justin Iveland
Marco Szalay
Orion Martin
Juan Campero
Juhwan Yoo
Michael Newman
William Giang
Gonzalo Garcia
Alex Opremcak
Amanda Mieszala
William Courtney
Andrey Klots
Wayne Liu
Pavel Laptev
Paul Conner
Rolando Somma
Vadim Smelyanskiy
Benjamin Chiaro
Grayson Young
Tim Burger
ILYA Drozdov
Agustin Di Paolo
Jimmy Chen
Marika Kieferova
Hung-Shen Chang
Michael Broughton
Negar Saei
Juan Atalaya
Markus Ansmann
Pavol Juhas
Murray Ich Nguyen
Yuri Lensky
Roberto Collins
Élie Genois
Jindra Skruzny
Yu Chen
Reza Fatemi
Leon Brill
Seneca Meeks
Ashley Huff
Doug Strain
Monica Hansen
Noah Shutty
Ebrahim Forati
Doug Thor
Dave Landhuis
Kenny Lee
Ping Yeh
Kunal Arya
Henry Schurkus
Cheng Xing
Cody Jones
Edward Farhi
Vlad Sivak
Raja Gosula
Andre Petukhov
Clint Earle
Alexander Korotkov
Ani Nersisyan
Christopher Schuster
George Sterling
Trond Andersen
Alexandre Bourassa
Salvatore Mandra
Kannan Sankaragomathi
Vinicius Ferreira
Science, 384 (2024), pp. 48-53
Preview abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
View details
Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
Christian Gogolin
Vincent Elfving
Fotios Gkritsis
Oumarou Oumarou
Gian-Luca R. Anselmetti
Masoud Mohseni
Andrew Dunsworth
William J. Huggins
Markus Rudolf Hoffmann
Alexis Morvan
Josh Godfrey Cogan
Ben Curtin
Guifre Vidal
Bob Benjamin Buckley
Trevor Johnathan Mccourt
Thomas E O'Brien
John Mark Kreikebaum
Rajeev Acharya
Joonho Lee
Ningfeng Zhu
Shirin Montazeri
Sergei Isakov
Jamie Yao
Clarke Smith
Rebecca Potter
Sean Harrington
Jeremy Patterson Hilton
Alex Crook
Fedor Kostritsa
Kim Ming Lau
Dmitry Abanin
Trent Huang
Aaron Shorter
Steve Habegger
Richard Ross Allen
Vladimir Shvarts
Alfredo Torres
Stefano Polla
Anthony Megrant
Charles Neill
Michael C. Hamilton
Dar Gilboa
Lily MeeKit Laws
Nicholas Bushnell
Kyle Anderson
Ramis Movassagh
Mike Shearn
Wojtek Mruczkiewicz
Desmond Chun Fung Chik
Xiao Mi
Brooks Riley Foxen
Frank Carlton Arute
Alejandro Grajales Dau
Yaxing Zhang
Lara Faoro
Alexander T. Lill
Jiun How Ng
Justin Thomas Iveland
Marco Szalay
Orion Martin
Juhwan Yoo
Michael Newman
William Giang
Alex Opremcak
William Courtney
Andrey Klots
Wayne Liu
Pavel Laptev
Paul Conner
Rolando Diego Somma
Vadim Smelyanskiy
Benjamin Chiaro
Grayson Robert Young
Tim Burger
Ilya Drozdov
Jimmy Chen
Marika Kieferova
Michael Blythe Broughton
Juan Atalaya
Markus Ansmann
Pavol Juhas
Murray Nguyen
Daniel Eppens
Roberto Collins
Jindra Skruzny
Igor Aleiner
Yu Chen
Reza Fatemi
Leon Brill
Ashley Anne Huff
Doug Strain
Ebrahim Forati
Dave Landhuis
Kenny Lee
Ping Yeh
Kunal Arya
Cody Jones
Edward Farhi
Andre Gregory Petukhov
Alexander Korotkov
Ani Nersisyan
Christopher Schuster
Kostyantyn Kechedzhi
Trond Ikdahl Andersen
Alexandre Bourassa
Kannan Aryaperumal Sankaragomathi
Nature Physics (2023)
Preview abstract
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations.
View details
Measurement-induced entanglement and teleportation on a noisy quantum processor
Vedika Khemani
Matteo Ippoliti
Andrew Dunsworth
Bill Huggins
Markus Hoffmann
Alexis Morvan
Josh Cogan
Ben Curtin
Guifre Vidal
Bob Buckley
Tom O'Brien
John Mark Kreikebaum
Rajeev Acharya
Joonho Lee
Ningfeng Zhu
Shirin Montazeri
Sergei Isakov
Jamie Yao
Clarke Smith
Rebecca Potter
Jeremy Hilton
Paula Heu
Alexei Kitaev
Alex Crook
Fedor Kostritsa
Kim Ming Lau
Dmitry Abanin
Trent Huang
Aaron Shorter
Steve Habegger
Gina Bortoli
Seun Omonije
Charles Rocque
Vladimir Shvarts
Alfredo Torres
Anthony Megrant
Charles Neill
Michael Hamilton
Dar Gilboa
Lily Laws
Nicholas Bushnell
Ramis Movassagh
Mike Shearn
Wojtek Mruczkiewicz
Desmond Chik
Leonid Pryadko
Xiao Mi
Brooks Foxen
Frank Arute
Alejo Grajales Dau
Yaxing Zhang
Alexander Lill
JiunHow Ng
Justin Iveland
Marco Szalay
Orion Martin
Juhwan Yoo
Michael Newman
William Giang
Alex Opremcak
Amanda Mieszala
William Courtney
Andrey Klots
Wayne Liu
Pavel Laptev
Paul Conner
Rolando Somma
Vadim Smelyanskiy
Jesse Hoke
Benjamin Chiaro
Grayson Young
Tim Burger
ILYA Drozdov
Agustin Di Paolo
Jimmy Chen
Marika Kieferova
Michael Broughton
Negar Saei
Juan Atalaya
Markus Ansmann
Pavol Juhas
Murray Ich Nguyen
Yuri Lensky
Daniel Eppens
Roberto Collins
Jindra Skruzny
Yu Chen
Reza Fatemi
Leon Brill
Ashley Huff
Doug Strain
Monica Hansen
Noah Shutty
Ebrahim Forati
Dave Landhuis
Kenny Lee
Ping Yeh
Kunal Arya
Henry Schurkus
Cheng Xing
Cody Jones
Edward Farhi
Raja Gosula
Andre Petukhov
Alexander Korotkov
Ani Nersisyan
Christopher Schuster
George Sterling
Kostyantyn Kechedzhi
Trond Andersen
Alexandre Bourassa
Kannan Sankaragomathi
Vinicius Ferreira
Nature, 622 (2023), 481–486
Preview abstract
Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.
View details