Google at NeurIPS 2025
Google at NeurIPS 2025
Google is proud to be a Diamond Sponsor of the 39th annual Conference on Neural Information Processing Systems (NeurIPS 2025). NeurIPS 2025 is being held Tuesday, December 2nd through Sunday, December 7th in San Diego, California.
We have a strong presence this year with over 175 accepted papers and active involvement in over 70 competitions, workshops and tutorials. We are also proud to be sponsoring the Women in Machine Learning and LatinX in AI workshops. We look forward to sharing some of our extensive ML research and expanding our partnership with the broader ML research community.
Attending NeurIPS 2025? Come visit the Google booth (#1533) to learn more about the exciting work we’re doing to solve some of the field’s most interesting challenges. Be sure to check out the @GoogleResearch X and Google Research LinkedIn accounts for announcements about Google booth activities.
Take a look below to learn more about Google's technical participation at NeurIPS 2025 (Google affiliations in bold and * indicates work done while at Google).
All session times are provided in PST.
Expo
-
Tue, Dec 2 | 12:00PM — 3:00PM, Upper Level Room 29A-D (Expo Demonstration)
PRIME Guardrails in Action: A Live Demonstration of an Agentic, Multi-Layered Safety Framework for Generative AISpeaker: Yiran 'Ivy' Si, Afshaan Mazagonwalla
-
Wed, Dec 3 | 4:30PM — 5:30PM, Upper Level Ballroom 20D (Expo Talk)
The Co-X Framework: Versatile AI Agents for Automating and Augmenting Professional WorkflowsSpeakers: Chen-Yu Lee, Jinsung Yoon, Yale Song, Tomas Pfister
-
Wed, Dec 3 | 12:00PM — 1:30PM, Upper Level Ballroom 6CDEF (Expo Workshop)
Multi-Agent Systems in Industry: From Research to Real-World ImpactSpeakers: Jinsung Yoon, Chen-Yu Lee, Tomas Pfister
Orals
-
Wed, Dec 3 | 10:00AM — 11:00AM, Upper Level Ballroom 20AB (Oral 1C Theory 1)
High-Dimensional Calibration from Swap RegretMaxwell Fishelson, Noah Golowich, Mehryar Mohri, Jon Schneider
-
Wed, Dec 3 | 10:00AM — 11:00AM, Upper Level Ballroom 20AB (Oral 1C Theory 1)
Optimal Mistake Bounds for Transductive Online LearningZachary Chase, Steve Hanneke, Shay Moran, Jonathan Shafer
-
Wed, Dec 3 | 3:30PM — 4:30PM, Upper Level Ballroom 6AB (Oral 2B Deep Learning 1)
The Emergence of Sparse Attention: Impact of Data Distribution and Benefits of RepetitionNicolas Zucchet, Francesco D'Angelo, Andrew Lampinen, Stephanie Chan
-
Thu, Dec 4 | 3:30PM — 4:30PM, Upper Level Ballroom 6AB (Oral 4B Generation/Simulation 2)
Exploring Diffusion Transformer Designs via GraftingKeshigeyan Chandrasegaran, Michael Poli, Daniel Y. Fu, Dongjun Kim, Lea M. Hadzic, Manling Li, Agrim Gupta, Stefano Massaroli, Azalia Mirhoseini, Juan Carlos Niebles, Stefano Ermon, Li Fei-Fei
-
Fri, Dec 5 | 3:30PM — 4:30PM, Exhibit Hall F,G,H (Oral 6A Reinforcement/State-space 3)
Learning Long Range Dependencies Through Time Reversal Symmetry BreakingGuillaume Pourcel, Guillaume Pourcel, Maxence Ernoult
Google Sponsored Affinity Workshops
-
Tue, Dec 2 | 9:00AM — 5:00PM, Upper Level Room 33ABC
Latinx in AI (LXAI)Speaker: Crispin Velez
Presentation Chair: Melissa MontesGoogle Sponsored, Platinum
-
Tue, Dec 2 | 1:00PM — 5:30PM, Upper Level Room 32AB
Muslims in Machine Learning (MusIML) -
Tue, Dec 2 | 8:00AM — 5:00PM, Upper Level Ballroom 20D
Women in Machine Learning (WiML)Organizer: Nikita Saxena, Aishwarya Jadhav
Google Sponsored, Platinum
Workshops
-
Sat, Dec 6 | 9:00AM — 5:00PM, Upper Level Room 9
AI for Non-Human Animal CommunicationOrganizers: Vincent Dumoulin, Lauren Harrell
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Room 31ABC
Aligning Reinforcement Learning Experimentalists and Theorists (ARLET)Panelist: David Silver
Organizer: Csaba Szepesvári -
Sat, Dec 6 | 8:15AM — 5:00PM, Upper Level Room 8
CauScien: Uncovering Causality in ScienceOrganizer: Alexander D'Amour
-
Sat, Dec 6 | 8:00AM — 6:15PM, Upper Level Room 25ABC
Differentiable Learning of Combinatorial Algorithms: From Theory to PracticeSpeaker: Michael Galkin
-
Sat, Dec 6 | 8:30AM — 5:30PM, Upper Level Room 7
Dynamics at the Frontiers of Optimization, Sampling, and GamesSpeaker: Georgios Piliouras
-
Sat, Dec 6 | 9:00AM — 6:00PM, Upper Level Room 30A-E
Embodied World Models for Decision MakingSpeakers: Philip J. Ball, Pablo Samuel Castro
-
Sat, Dec 6 | 8:50AM — 5:00PM, Upper Level Room 24ABC
Foundation Models for the Brain and Body WorkshopOrganizer: Blake Richards
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Room 33ABC
GenAI for Health: Potential, Trust, and Policy ComplianceSpeaker: Vivek Natarajan
Organizers: Tiange Xiang, Xiaoxiao Li -
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Room 23ABC
GenProCC: 1st Workshop on Generative and Protective AI for Content CreationSpeaker: Chris Donahue
-
Sat, Dec 6 | 8:25AM — 5:30PM, Upper Level Ballroom 6A
MATH-AI: The 5th Workshop on Mathematical Reasoning and AISpeakers: Swarat Chaudhuri, Aviral Kumar
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Room 5AB
ML for SystemsOrganizer: Patrick Musau
-
Sat, Dec 6 | 7:50AM — 5:00PM, Upper Level Room 11AB
Multi-Turn Interactions in Large Language ModelsSpeaker: Natasha Jaques
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Ballroom 20A
OPT 2025: Optimization for Machine LearningSpeakers: Peter Bartlett, Tomer Koren, Sham Kakade
Organizers: Zak Mhammedi, Courtney Paquette -
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Room 2
Reliable ML from Unreliable DataOrganizer: Anay Mehrotra
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Ballroom 20C
Structured Probabilistic Inference and Generative ModelingSpeakers: Ruiqi Gao, Jiaxin Shi
Panelist: Valentin De Bortoli
Organizer: Arnaud Doucet
-
Sat, Dec 6 | 8:00AM — 5:00PM, Upper Level Ballroom 6B
What Makes a Good Video: Next Practices in Video Generation and EvaluationSpeakers: Ming-Hsuan Yang, Saining Xie, Dima Damen
Organizer: Bernt Schiele -
Sun, Dec 7 | 8:30AM — 5:00PM, Upper Level Ballroom 20A
AI for Science: The Reach and Limits of AI for Scientific DiscoverySpeaker: Stephan Hoyer
Organizer: Ada Fang
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 25ABC
AI That Keeps Up: Workshop on Continual and Compatible Foundation Model Updates (CCFM)Organizers: Amal Rannen-Triki, Sayna Ebrahimi
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 27AB
Artificial Intelligence for Music: Where Creativity Meets ComputationSpeakers: Chris Donahue, Ilaria Manco, Anna Huang
-
Sun, Dec 7 | 8:55AM — 5:10PM, Upper Level Room 5AB
CogInterp: Interpreting Cognition in Deep Learning ModelsSpeakers: Stephanie Chan, Sydney Levine
Organizer: Ellie Pavlick
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 2
Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and ScalingSpeakers: Isabela Albuquerque, Orhan Firat
Organizers: Berivan Isik, Nithya Attaluri
-
Sun, Dec 7 | 8:50AM — 5:15PM, Upper Level Room 33ABC
Foundations of Reasoning in Language ModelsSpeaker: Aviral Kumar
-
Sun, Dec 7 | 8:45AM — 6:15PM, Upper Level Ballroom 20D
LAW 2025: Bridging Language, Agent, and World Models for Reasoning and PlanningSpeakers: Dorsa Sadigh, Sherry Yang
Organizer: Kelsey Allen
-
Sun, Dec 7 | 8:30AM — 5:00PM, Upper Level Room 28A-E
Learning from Time-Series for HealthSpeaker: Daniel McDuff
Organizers: Xin Liu, Dimitris Spathis
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 30A-E
Mechanistic InterpretabilitySpeaker: Been Kim
Organizers: Neel Nanda, Martin Wattenberg
-
Sun, Dec 7 | 8:00AM — 5:00PM, Exhibit Hall F
New Perspectives in Graph Machine LearningSpeaker: Bryan Perozzi
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 1AB
Regulatable ML: Towards Bridging the Gaps between Machine Learning Research and RegulationsOrganizer: Hima Lakkaraju
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 23ABC
Scaling Environments for AgentsSpeakers: Edward Grefenstette, Jane Wang
Organizers: Ziyu Ye, Fangru Lin
-
Sun, Dec 7 | 8:45AM — 6:10PM, Upper Level Room 29A-D
Space in Vision, Language, and Embodied AISpeakers: Ranjay Krishna, Saining Xie
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Ballroom 6A
Symmetry and Geometry in Neural RepresentationsSpeaker: Razvan Pascanu
-
Sun, Dec 7 | 8:00AM — 5:00PM, Upper Level Room 26AB
UrbanAI: Harnessing Artificial Intelligence for Smart CitiesOrganizer: Judah Goldfeder
-
Sun, Dec 7 | 9:30AM — 5:00PM, Upper Level Room 4
What Can('t) Transformers Do?Speaker: Jon Kleinberg
Competitions
-
Sat, Dec 6 | 11:00AM — 1:45PM, Mezzanine Room 15AB
DCVLR: Data Curation for Vision Language ReasoningOrganizer: Saining Xie
-
Sat, Dec 6 | 11:00AM — 1:45PM, Mezzanine Room 15AB
EEG Foundation Challenge: From Cross-Task to Cross-Subject EEG DecodingOrganizer: Isabelle Guyon
-
Sat, Dec 6 | 2:00PM — 4:45PM, Upper Level Ballroom 6DE
CURE-Bench: Competition on Reasoning Models for Drug Decision-Making in Precision TherapeuticsSpeaker: Shekoofeh Azizi
-
Sat, Dec 6 | 2:00PM — 4:45PM, Mezzanine Room 15AB
Open Polymer Challenge: Leveraging Machine Learning for Polymer InformaticsOrganizer: Addison Howard
-
Sun, Dec 7 | 8:00AM — 10:45AM, Mezzanine Room 15AB
The PokéAgent Challenge: Competitive and Long-Context Learning at ScaleSpeaker & Panelist: Minmin Chen
Organizer: Kiran Vodrahalli -
Sun, Dec 7 | 11:00AM — 1:45PM, Exhibit Hall G,H
FAIR Universe – Handling Uncertainties and Distribution Shifts for Precision CosmologyOrganizer: Isabelle Guyon
-
Sun, Dec 7 | 2:00PM — 4:45PM, Upper Level Ballroom 6B
NeurIPS 2025 Competition Proposal: MMU-RAG: Massive Multi-Modal User-Centric Retrieval Augmented Generation BenchmarkOrganizer: Zhihan Zhang
-
Sun, Dec 7 | 2:00PM — 4:45PM, Mezzanine Room 15AB
The 2025 Google Code Golf ChampionshipOrganizers: Michael D. Moffitt, Divy Thakkar, Ryan Burnell, Orhan Firat, Walter Reade, Sohier Dane, Addison Howard
-
Sun, Dec 7 | 2:00PM — 4:45PM, Upper Level Ballroom 6CF
The 2025 PNPL Competition: Speech Detection and Phoneme Classification in the LibriBrain DatasetOrganizers: Brendan Shillingford, Greg Farquhar
Tutorials
-
Tue, Dec 2 | 9:30AM — 12:00PM, Upper Level Ballroom 6AB
Energy and Power as First-Class ML Design MetricsIndustry Panel: Cooper Elsworth
-
Tue, Dec 2 | 1:30PM — 4:00PM, Upper Level Room 30A-E
Autoregressive Models Beyond LanguageOrganizers: Kaiming He
Spotlights
A Implies B: Circuit Analysis in LLMs for Propositional Logical Reasoning
Guan Zhe Hong*, Nishanth Dikkala, Enming Luo, Cyrus Rashtchian, Xin Wang, Rina Panigrahy
Affine-Invariant Global Non-Asymptotic Convergence Analysis of BFGS Under Self-Concordance
Qiujiang Jin, Aryan Mokhtari
Agnostic Learning Under Targeted Poisoning: Optimal Rates and the Role of Randomness
Bogdan Chornomaz, Yonatan Koren, Shay Moran, Tom Waknine
An Analysis of Causal Effect Estimation Using Outcome Invariant Data Augmentation
Uzair Akbar, Niki Kilbertus, Hao Shen, Krikamol Muandet, Bo Dai
Communication-Efficient Language Model Training Scales Reliably and Robustly: Scaling Laws for DiLoCo
Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur Szlam, Arthur Douillard
Depth-Width Tradeoffs for Transformers on Graph Tasks
Gilad Yehudai, Clayton Sanford, Maya Bechler-Speicher, Orr Fischer, Ran Gilad-Bachrach, Amir Globerson
Dimension-Adapted Momentum Outscales SGD
Damien Ferbach, Katie Everett, Gauthier Gidel, Elliot Paquette, Courtney Paquette
Fast Training of Large Kernel Models with Delayed Projections
Amirhesam Abedsoltan, Siyuan Ma*, Parthe Pandit, Mikhail Belkin
Generalized Top-𝓀 Mallows Model for Ranked Choices
Shahrzad Haddadan, Sara Ahmadian
LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering
Jonas Kulhanek, Marie-Julie Rakotosaona, Fabian Manhardt, Christina Tsalicoglou, Michael Niemeyer, Torsten Sattler, Songyou Peng, Federico Tombari
Object-Centric 3D Motion Field for Robot Learning from Human Videos
Zhao-Heng Yin, Sherry Yang, Pieter Abbeel
On Agnostic PAC Learning in the Small Error Regime
Julian Asilis, Mikael Møller Høgsgaard, Grigoris Velegkas
On Traceability in ℓp Stochastic Convex Optimization
Sasha Voitovych, Mahdi Haghifam, Idan Attias, Gintare Karolina Dziugaite, Roi Livni, Daniel M. Roy
OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
Shiting Xiao, Rishabh Kabra, Yuhang Li, Donghyun Lee, João Carreira, Priyadarshini Panda
Pass@K Policy Optimization: Solving Harder Reinforcement Learning Problems
Christian Walder, Deep Karkhanis
PiKE: Adaptive Data Mixing for Large-Scale Multi-Task Learning Under Low Gradient Conflicts
Zeman Li*, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, Vahab Mirrokni
Plasticity as the Mirror of Empowerment
David Abel, Michael Bowling, André Barreto, Will Dabney, Shi Dong, Steven Hansen, Anna Harutyunyan, Khimya Khetarpal, Clare Lyle, Razvan Pascanu, Georgios Piliouras, Doina Precup, Jonathan Richens, Mark Rowland, Tom Schaul, Satinder Singh
Private Hyperparameter Tuning with Ex-Post Guarantee
Badih Ghazi, Pritish Kamath, Alexander Knop, Ravi Kumar, Pasin Manurangsi, Chiyuan Zhang
Private Set Union with Multiple Contributions
Travis Dick, Haim Kaplan, Alex Kulesza, Uri Stemmer, Ziteng Sun, Ananda Theertha Suresh
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Tara Akhound-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet, Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, Alexander Tong
Quantization-Free Autoregressive Action Transformer
Ziyad Sheebaelhamd, Michael Tschannen, Michael Muehlebach, Claire Vernade
Reconstruction and Secrecy Under Approximate Distance Queries
Shay Moran, Elizaveta Nesterova
Regret Bounds for Adversarial Contextual Bandits with General Function Approximation and Delayed Feedback
Orin Levy, Liad Erez, Alon Cohen, Yishay Mansour
ROGR: Relightable 3D Objects Using Generative Relighting
Jiapeng Tang, Matthew Lavine, Dor Verbin, Stephan J. Garbin, Matthias Nießner, Ricardo Martin Brualla, Pratul P. Srinivasan, Philipp Henzler
Stable Gradients for Stable Learning at Scale in Deep Reinforcement Learning
Roger Creus Castanyer, Johan Obando-Ceron, Lu Li, Pierre-Luc Bacon, Glen Berseth, Aaron Courville,
Pablo Samuel Castro
Streaming Attention Approximation via Discrepancy Theory
Ekaterina Kochetkova, Kshiteej Sheth, Insu Han, Amir Zandieh, Michael Kapralov
The World Is Bigger: A Computationally-Embedded Perspective on the Big World Hypothesis
Alex Lewandowski, Aditya A. Ramesh, Edan Meyer, Dale Schuurmans, Marlos C. Machado
Universal Sequence Preconditioning
Annie Marsden, Elad Hazan
Papers
3DLLM-Mem: Long-Term Spatial-Temporal Memory for Embodied 3D Large Language Model
Wenbo Hu, Yining Hong, Yanjun Wang, Leison Gao, Zibu Wei, Xingcheng Yao, Nanyun Peng, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang
3D-Prover: Diversity Driven Theorem Proving With Determinantal Point Processes
Sean Lamont, Christian Walder, Amir Dezfouli, Paul Montague, Michael Norrish
A Unified Approach to Submodular Maximization Under Noise
Kshipra Bhawalkar, Yang Cai, Zhe Feng, Christopher Liaw, Tao Lin*
Additive Models Explained: A Computational Complexity Approach
Shahaf Bassan, Michal Moshkovitz, Guy Katz
AI Debate Aids Assessment of Controversial Claims
Salman Rahman, Sheriff Issaka, Ashima Suvarna, Genglin Liu, James Shiffer, Jaeyoung Lee, Md Rizwan Parvez, Hamid Palangi, Shi Feng, Nanyun Peng, Yejin Choi, Julian Michael, Liwei Jiang, Saadia Gabriel
AI-Generated Video Detection via Perceptual Straightening
Christian Internò, Robert Geirhos, Markus Olhofer, Sunny Liu, Barbara Hammer, David Klindt
Analyzing Similarity Metrics for Data Selection for Language Model Pretraining
Dylan Sam*, Ayan Chakrabarti, Afshin Rostamizadeh, Srikumar Ramalingam, Gui Citovsky, Sanjiv Kumar
An Ellipsoid Algorithm for Online Convex Optimization
Zakaria Mhammedi
Beyond Least Squares: Uniform Approximation and the Hidden Cost of Misspecification
Davide Maran, Csaba Szepesvári
BioReason: Incentivizing Multimodal Biological Reasoning within a DNA-LLM Model
Adibvafa Fallahpour, Andrew Magnuson, Purav Gupta, Shihao Ma, Jack Naimer, Arnav Shah, Haonan Duan, Omar Ibrahim, Hani Goodarzi, Chris J. Maddison, Bo Wang
Bridging Sign and Spoken Languages: Pseudo Gloss Generation for Sign Language Translation
Jianyuan Guo*, Peike Li, Trevor Cohn
Closed-Form Training Dynamics Reveal Learned Features and Linear Structure in Word2Vec-Like Models
Dhruva Karkada, James B. Simon, Yasaman Bahri, Michael R. DeWeese
Consistently Simulating Human Personas with Multi-Turn Reinforcement Learning
Marwa Abdulhai, Ryan Cheng, Donovan Clay, Tim Althoff, Sergey Levine, Natasha Jaques
Constructing an Optimal Behavior Basis for the Option Keyboard
Lucas N. Alegre, Ana L. C. Bazzan, André Barreto, Bruno C. da Silva
Contextual Dynamic Pricing with Heterogeneous Buyers
Thodoris Lykouris, Sloan Nietert, Princewill Okoroafor, Chara Podimata, Julian Zimmert
Data-Adaptive Exposure Thresholds Under Network Interference
Vydhourie Thiyageswaran, Tyler H. McCormick, Jennifer Brennan
DataRater: Meta-Learned Dataset Curation
Dan A. Calian, Gregory Farquhar, Iurii Kemaev, Luisa M. Zintgraf, Matteo Hessel, Jeremy Shar, Junhyuk Oh, András György, Tom Schaul, Jeffrey Dean, Hado van Hasselt, David Silver
Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates
Andrew Lowy, Daogao Liu
Dimension-free Score Matching and Time Bootstrapping for Diffusion Models
Syamantak Kumar*, Dheeraj Nagaraj, Purnamrita Sarkar
EA3D: Online Open-World 3D Object Extraction from Streaming Videos
Xiaoyu Zhou, Jingqi Wang, Yuang Jia, Yongtao Wang, Deqing Sun, Ming-Hsuan Yang
Efficient Adaptive Federated Optimization
Su Hyeong Lee, Sidharth Sharma, Manzil Zaheer, Tian Li
Efficient Data Selection at Scale via Influence Distillation
Mahdi Nikdan*, Vincent Cohen-Addad, Dan Alistarh, Vahab Mirrokni
Efficient Spectral Control of Partially Observed Linear Dynamical Systems
Anand Brahmbhatt, Gon Buzaglo, Sofiia Druchyna, Elad Hazan
Efficiently Verifiable Proofs of Data Attribution
Ari Karchmer, Martin Pawelcyzk, Seth Neel
Emergent Temporal Correspondences from Video Diffusion Transformers
Jisu Nam, Soowon Son, Dahyun Chung, Jiyoung Kim, Siyoon Jin, Junhwa Hur, Seungryong Kim
Enhancing Personalized Multi-Turn Dialogue with\nCuriosity Reward
Yanming Wan*, Jiaxing Wu, Marwa Abdulhai, Lior Shani, Natasha Jaques
Escaping Collapse: The Strength of Weak Data for Large Language Model Training
Kareem Amin, Sara Babakniya, Alex Bie, Weiwei Kong, Umar Syed, Sergei Vassilvitskii
EUGens: Efficient, Unified, and General Dense Layers
Sang Min Kim, Byeongchan Kim, Arijit Sehanobish, Somnath Basu Roy Chowdhury, Rahul Kidambi, Dongseok Shim, Avinava Dubey, Snigdha Chaturvedi, Min-hwan Oh, Krzysztof Choromanski
Exact and Linear Convergence for Federated Learning Under Arbitrary Client Participation Is Attainable
Bicheng Ying, Zhe Li, HaiboYag
Exploring Diffusion Transformer Designs via Grafting
Keshigeyan Chandrasegaran, Michael Poli, Daniel Y. Fu, Dongjun Kim, Lea M. Hadzic, Manling Li, Agrim Gupta, Stefano Massaroli, Azalia Mirhoseini, Juan Carlos Niebles, Stefano Ermon, Li Fei-Fei
Exploring the Limits of Strong Membership Inference Attacks on Large Language Models
Jamie Hayes, Ilia Shumailov, Christopher A. Choquette-Choo, Matthew Jagielski, Georgios Kaissis, Milad Nasr, Meenatchi Sundaram Muthu Selva Annamalai, Niloofar Mireshghallah, Igor Shilov, Matthieu Meeus, Yves-Alexandre de Montjoye, Katherine Lee, Franziska Boenisch, Adam Dziedzic, A. Feder Cooper
Fast Attention Mechanisms: A Tale of Parallelism
Jingwen Liu, Hantao Yu, Clayton Sanford, Alexandr Andoni, Daniel Hsu
Fast Last-Iterate Convergence of SGD in the Smooth Interpolation Regime
Amit Attia, Matan Schliserman, Uri Sherman, Tomer Koren
Fine-Grained Preference Optimization Improves Spatial Reasoning in VLMs
Yifan Shen, Yuanzhe Liu, Jingyuan Zhu, Xu Cao, Xiaofeng Zhang, Yixiao He, Wenming Ye, James M. Rehg, Ismini Lourentzou
Force Prompting: Video Generation Models Can Learn and Generalize Physics-based Control Signals
Nate Gillman, Charles Herrmann, Michael Freeman, Daksh Aggarwal, Evan Luo, Deqing Sun, Chen Sun
From Contextual Combinatorial Semi-Bandits to Bandit List Classification: Improved Sample Complexity with Sparse Rewards
Liad Erez, Tomer Koren
From Dormant to Deleted: Tamper-Resistant Unlearning Through Weight-Space Regularization
Shoaib Ahmed Siddiqui, Adrian Weller, David Krueger, Gintare Karolina Dziugaite, Michael C. Mozer, Eleni Triantafillou
From Style to Facts: Mapping the Boundaries of Knowledge Injection with Finetuning
Eric Zhao, Pranjal Awasthi, Nika Haghtalab
GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation
Sohyun Lee, Yeho Gwon, Lukas Hoyer, Suha Kwak
Gatekeeper: Improving Model Cascades Through Confidence Tuning
Stephan Rabanser*, Nathalie Rauschmayr, Achin Kulshrestha, Petra Poklukar, Wittawat Jitkrittum, Sean Augenstein, Congchao Wang, Federico Tombari
Generating Creative Chess Puzzles
Xidong Feng, Vivek Veeriah, Marcus Chiam, Michael Dennis, Ryan Pachauri, Thomas Tumiel, Federico Barbero*, Johan Obando-Ceron*, Jiaxin Shi, Satinder Singh, Shaobo Hou, Nenad Tomašev, Tom Zahavy
GIST: Greedy Independent Set Thresholding for Max-Min Diversification with Submodular Utility
Matthew Fahrbach, Srikumar Ramalingam, Morteza Zadimoghaddam, Sara Ahmadian, Gui Citovsky, Giulia DeSalvo
Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems
Shangbin Feng*, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi, Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, Tomas Pfister
Hierarchical Retrieval: The Geometry and a Pretrain-Finetune Recipe
Chong You, Rajesh Jayaram, Ananda Theertha Suresh, Robin Nittka, Felix Yu, Sanjiv Kumar
High-Dimensional Calibration from Swap Regret
Maxwell Fishelson, Noah Golowich, Mehryar Mohri, Jon Schneider
HoliGS: Holistic Gaussian Splatting for Embodied View Synthesis
Xiaoyuan Wang, Yizhou Zhao, Botao Ye, Xiaojun Shan, Weijie Lyu, Lu Qi, Kelvin C.K. Chan, Yinxiao Li, Ming-Hsuan Yang
Hybrid Latent Reasoning via Reinforcement Learning
Zhenrui Yue, Bowen Jin, Huimin Zeng, Honglei Zhuang, Zhen Qin, Jinsung Yoon, Lanyu Shang, Jiawei Han, Dong Wang
IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Ronald Clark, Ming-Hsuan Yang
Improved Balanced Classification with Theoretically Grounded Loss Functions
Corinna Cortes, Mehryar Mohri, Yutao Zhong
Improved Best-of-Both-Worlds Regret for Bandits with Delayed Feedback
Ofir Schlisselberg, Tal Lancewicki, Peter Auer, Yishay Mansour
Improved Scaling Laws in Linear Regression via Data Reuse
Licong Lin, Jingfeng Wu, Peter L. Bartlett
Individual Regret in Cooperative Stochastic Multi-Armed Bandits
Idan Barnea, Tal Lancewicki, Yishay Mansour
Informed Correctors for Discrete Diffusion Models
Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, Scott Linderman
InvisibleInk: High-Utility and Low-Cost Text Generation with Differential Privacy
Vishnu Vinod, Krishna Pillutla, Abhradeep Thakurta
Isotropic Noise in Stochastic and Quantum Convex Optimization
Annie Marsden, Liam O'Carroll, Aaron Sidford, Chenyi Zhang
Kernel Density Steering: Inference-Time Scaling via Mode Seeking for Image Restoration
Yuyang Hu*, Kangfu Mei, Mojtaba Sahraee-Ardakan, Ulugbek S. Kamilov, Peyman Milanfar, Mauricio Delbracio
Learning Efficient Fuse-and-Refine for Feed-Forward 3D Gaussian Splatting
Yiming Wang, Lucy Chai, Xuan Luo, Michael Niemeyer, Manuel Lagunas, Stephen Lombardi, Siyu Tang, Tiancheng Sun
Large Stepsizes Accelerate Gradient Descent for Regularized Logistic Regression
Jingfeng Wu, Pierre Marion, Peter L. Bartlett
Learning Long Range Dependencies Through Time Reversal Symmetry Breaking
Guillaume Pourcel, Maxence Ernoult
Learning Neural Exposure Fields for View Synthesis
Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Christina Tsalicoglou, Keisuke Tateno, Jonathan T. Barron, Federico Tombari
Length Generalization via Auxiliary Tasks
Pranjal Awasthi, Anupam Gupta, Ravi Kumar
LocDiff: Identifying Locations on Earth by Diffusing in the Hilbert Space
Zhangyu Wang, Zeping Liu, Jielu Zhang, Zhongliang Zhou, Qian Cao, Nemin Wu, Lan Mu, Yang Song, Yiqun Xie, Ni Lao, Gengchen Mai
Machine Unlearning Under Overparameterization
Jacob L. Block, Aryan Mokhtari, Sanjay Shakkottai
Marginal-Nonuniform PAC Learnability
Steve Hanneke, Shay Moran, Maximilian Thiessen
Martingale Posterior Neural Networks for Fast Sequential Decision Making
Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Álvaro Cartea, Kevin Murphy
Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs
Changhao Li, Yuchen Zhuang, Rushi Qiang, Haotian Sun, Hanjun Dai, Chao Zhang, Bo Dai
Mechanism Design via the Interim Relaxation
Kshipra Bhawalkar, Marios Mertzanidis, Divyarthi Mohan, Alexandros Psomas
Mind the GAP! The Challenges of Scale in Pixel-Based Deep Reinforcement Learning (see blog post)
Ghada Sokar, Pablo Samuel Castro
Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, Se-Young Yun
MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement (see blog post)
Jaehyun Nam*, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö. Arik, Tomas Pfister
Multiclass Loss Geometry Matters for Generalization of Gradient Descent in Separable Classification
Matan Schliserman, Tomer Koren
Nearly-Linear Time and Massively Parallel Algorithms for 𝓀-anonymity
Kevin Aydin, Honghao Lin*, David P. Woodruff, Peilin Zhong
Nested Learning: The Illusion of Deep Learning Architectures (see blog post)
Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, Vahab Mirrokni
No-Regret Online Autobidding Algorithms in First-Price Auctions
Yilin Li, Yuan Deng, Wei Tang, Hanrui Zhang
Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, Zeynep Akata
Non-stationary Bandit Convex Optimization: A Comprehensive Study
Xiaoqi Liu, Dorian Baudry, Julian Zimmert, Patrick Rebeschini, Arya Akhavan
Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations
Gaia Di Lorenzo, Federico Tombari, Marc Pollefeys, Daniel Barath
On the Complexity of Finding Stationary Points in Nonconvex Simple Bilevel Optimization
Jincheng Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, Aryan Mokhtari
On the Emergence of Linear Analogies in Word Embeddings
Daniel J. Korchinski, Dhruva Karkada, Yasaman Bahri, Matthieu Wyart
On Union-Closedness of Language Generation
Steve Hanneke, Anay Mehrotra, Amin Karbasi, Grigoris Velegkas
Optimal Mistake Bounds for Transductive Online Learning
Zachary Chase, Steve Hanneke, Shay Moran, Jonathan Shafer
Optimal Rates in Continual Linear Regression via Increasing Regularization
Ran Levinstein, Amit Attia, Matan Schliserman, Uri Sherman, Tomer Koren, Daniel Soudry, Itay Evron
Path-Specific Effects for Pulse-Oximetry Guided Decisions in Critical Care
Kevin Zhang, Yonghan Jung, Divyat Mahajan, Karthikeyan Shanmugam, Shalmali Joshi
Predictive Coding Enhances Meta-RL to Achieve Interpretable Bayes-Optimal Belief Representation Under Partial Observability
Po-Chen Kuo, Han Hou, Will Dabney, Edgar Y. Walker
Principled Model Routing for Unknown Mixtures of Source Domains
Christoph Dann, Yishay Mansour, Teodor V. Marinov, Mehryar Mohri
Privacy Reasoning in Ambiguous Contexts
Ren Yi, Octavian Suciu, Adrià Gascón, Sarah Meiklejohn, Eugene Bagdasarian, Marco Gruteser
Private Geometric Median in Nearly-Linear Time
Syamantak Kumar, Daogao Liu, Kevin Tian, Chutong Yang
Probably Approximately Precision and Recall Learning
Lee Cohen, Yishay Mansour, Shay Moran, Han Shao
ProDyG: Progressive Dynamic Scene Reconstruction via Gaussian Splatting from Monocular Videos
Shi Chen, Erik Sandström, Sandro Lombardi, Siyuan Li, Martin R. Oswald
Provable Meta-Learning with Low-Rank Adaptations
Jacob L. Block, Sundararajan Srinivasan, Liam Collins, Aryan Mokhtari, Sanjay Shakkottai
Quantifying Cross-Modality Memorization in Vision-Language Models
Yuxin Wen*, Yangsibo Huang, Tom Goldstein, Ravi Kumar, Badih Ghazi, Chiyuan Zhang
RAT: Bridging RNN Efficiency and Attention Accuracy via Chunk-Based Sequence Modeling
Xiuying Wei, Anunay Yadav, Razvan Pascanu, Caglar Gulcehre
Recursive Inference Scaling: A Winning Path to Scalable Inference in Language and Multimodal Systems
Ibrahim Alabdulmohsin, Xiaohua Zhai
REINFORCE Converges to Optimal Policies with Any Learning Rate
Samuel Robertson, Thang D. Chu, Bo Dai, Dale Schuurmans, Csaba Szepesvári, Jincheng Mei
Reinforcement Learning with Backtracking Feedback
Bilgehan Sel*, Vaishakh Keshava (GDM), Phillip Wallis, Lukas Rutishauser, Ming Jin, Dingcheng Li
Rendering-Aware Reinforcement Learning for Vector Graphics Generation
Juan A. Rodriguez, Haotian Zhang, Abhay Puri, Aarash Feizi, Rishav Pramanik, Pascal Wichmann, Arnab Mondal, Mohammad Reza Samsami, Rabiul Awal, Perouz Taslakian, Spandana Gella, Sai Rajeswar, David Vazquez, Christopher Pal, Marco Pedersoli
Replicable Online Pricing
Kiarash Banihashem, MohammadHossein Bateni, Hossein Esfandiari, Samira Goudarzi, MohammadTaghi Hajiaghayi
Robust and Diverse Multi-Agent Learning via Rational Policy Gradient
Niklas Lauffer, Ameesh Shah, Micah Carroll, Sanjit A. Seshia, Stuart Russell, Michael Dennis
Robust Contextual Pricing
Anupam Gupta, Guru Guruganesh, Renato Paes Leme, Jon Schneider
Robust LLM Alignment via Distributionally Robust Direct Preference Optimization
Zaiyan Xu, Sushil Vemuri, Kishan Panaganti, Dileep Kalathil, Rahul Jain, Deepak Ramachandran
ROGR: Relightable 3D Objects Using Generative Relighting
Jiapeng Tang, Matthew Lavine, Dor Verbin, Stephan J. Garbin, Matthias Nießner, Ricardo Martin Brualla, Pratul P. Srinivasan, Philipp Henzler
Sampling 3D Molecular Conformers with Diffusion Transformers
J. Thorben Frank, Winfried Ripken, Gregor Lied, Klaus Robert Müller, Oliver T. Unke, Stefan Chmiela
Scalable In-context Ranking with Generative Models
Nilesh Gupta, Chong You, Srinadh Bhojanapalli, Sanjiv Kumar, Inderjit Dhillon, Felix Yu
Scaling Embedding Layers in Language Models
Da Yu, Edith Cohen, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Daogao Liu, Chiyuan Zhang
Scaling Image Geo-Localization to Continent Level
Philipp Lindenberger*, Paul-Edouard Sarlin, Jan Hosang, Marc Pollefeys, Simon Lynen, Eduard Trulls
Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing
Adel Javanmard, Rudrajit Das, Alessandro Epasto, Vahab Mirrokni
Self-Improving Embodied Foundation Models
Seyed Kamyar Seyed Ghasemipour*, Ayzaan Wahid, Jonathan Tompson, Pannag Sanketi, Igor Mordatch
SensorLM: Learning the Language of Wearable Sensors (see blog post)
Yuwei Zhang, Kumar Ayush, Siyuan Qiao, A. Ali Heydari, Girish Narayanswamy*, Maxwell A. Xu*, Ahmed A. Metwally, Shawn Xu, Jake Garrison, Xuhai Xu, Tim Althoff, Yun Liu, Pushmeet Kohli, Jiening Zhan, Mark Malhotra, Shwetak Patel, Cecilia Mascolo, Xin Liu, Daniel McDuff, Yuzhe Yang
Sequentially Auditing Differential Privacy
Tomás González, Mateo Dulce Rubio, Aaditya Ramdas, Mónica Ribero
Spark Transformer: Reactivating Sparsity in\nTransformer FFN and Attention
Chong You, Kan Wu*, Zhipeng Jia*, Lin Chen, Srinadh Bhojanapalli, Jiaxian Guo, Utku Evci, Jan Wassenberg, Praneeth Netrapalli, Jeremiah J. Willcock, Suvinay Subramanian, Felix Chern, Alek Andreev, Shreya Pathak, Felix Yu, Prateek Jain, Henry M. Levy, David E. Culler, Sanjiv Kumar
Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Thang D. Bui, Michalis K. Titsias
SpectraLDS: Provable Distillation for Linear Dynamical Systems
Devan Shah, Shlomo Fortgang, Sofiia Druchyna, Elad Hazan
SPRINT: Enabling Interleaved Planning and Parallelized Execution in Reasoning Models
Emil Biju, Shayan Talaei, Zhemin Huang, Mohammadreza Pourreza, Azalia Mirhoseini, Amin Saberi
Stable Cinemetrics : Structured Taxonomy and Evaluation for Professional Video Generation
Agneet Chatterjee, Rahim Entezari, Maksym Zhuravinskyi, Max Lapin, Reshinth Adithyan, Amit Raj, Chitta Baral, Yezhou Yang, Varun Jampani
SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications
Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo, Xiaohan Xu, Yue Zhang, Ziwei Tang, Yuanshuai Li, Florensia Widjaja, Xintong Zhu, Feige Zhou, Yongfeng Huang, Yannis Papakonstantinou, Fatma Ozcan, Chenhao Ma, Reynold Cheng
Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Haoxiang Wang, Zinan Lin, Da Yu, Huishuai Zhang
Temporal Chain of Thought: Long-Video Understanding by Thinking in Frames
Anurag Arnab, Ahmet Iscen, Mathilde Caron, Alireza Fathi, Cordelia Schmid
The Cost of Compression: Tight Quadratic Black-Box Attacks on Sketches for ℓ2 Norm Estimation
Sara Ahmadian, Edith Cohen, Uri Stemmer
The Emergence of Sparse Attention: Impact of Data Distribution and Benefits of Repetition
Nicolas Zucchet, Francesco D'Angelo, Andrew Lampinen, Stephanie Chan
Tight Bounds for Answering Adaptively Chosen Concentrated Queries
Emma Rapoport, Edith Cohen, Uri Stemmer
Titans: Learning to Memorize at Test Time
Ali Behrouz, Peilin Zhong, Vahab Mirrokni
Tracing the Representation Geometry of Language Models from Pretraining to Post-Training
Melody Zixuan Li, Kumar Krishna Agrawal, Arna Ghosh, Komal Kumar Teru, Adam Santoro, Guillaume Lajoie, Blake A. Richards
Training-Free Online Video Step Grounding
Luca Zanella, Massimiliano Mancini, Yiming Wang, Alessio Tonioni, Elisa Ricci
UMAMI: Unifying Masked Autoregressive Models and Deterministic Rendering for View Synthesis
Tung Le, Tuan Pham, Tung Nguyen, Deying Kong, Xiaohui Xie, Stephan Mandt
Uncovering a Universal Abstract Algorithm for Modular Addition in Neural Networks
Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Létourneau, Doina Precup, Jonathan Love
Understanding Challenges to the Interpretation of\nDisaggregated Evaluations of Algorithmic Fairness
Stephen R. Pfohl, Natalie Harris, Chirag Nagpal, David Madras, Vishwali Mhasawade, Olawale Salaudeen, Awa Dieng, Shannon Sequeira, Santiago Arciniegas, Lillian Sung, Nnamdi Ezeanochie, Heather Cole-Lewis, Katherine Heller, Sanmi Koyejo, Alexander D'Amour
Understanding Outer Optimizers in Local SGD:\nLearning Rates, Momentum, and Acceleration
Ahmed Khaled*, Satyen Kale*, Arthur Douillard, Chi Jin, Rob Fergus, Manzil Zaheer*
Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy
Bogdan Kulynych, Juan Felipe Gomez, Georgios Kaissis, Jamie Hayes, Borja Balle, Flavio P. Calmon, Jean Louis Raisaro
Universal Sequence Preconditioning
Annie Marsden, Elad Hazan
VESSA: Video-based objEct-centric Self-Supervised Adaptation for Visual Foundation Models
Jesimon Barreto, Carlos Caetano, André Araujo, William Robson Schwartz
When Do Transformers Outperform Feedforward and Recurrent Networks? A Statistical Perspective
Alireza Mousavi-Hosseini, Clayton Sanford, Denny Wu, Murat A. Erdogdu
Zero-Shot Performance Prediction for Probabilistic Scaling Laws
Viktoria Schram, Markus Hiller, Daniel Beck, Trevor Cohn
Datasets & Benchmarks - Spotlights
Robo2VLM: Improving Visual Question Answering Using Large-Scale Robot Manipulation Data
Kaiyuan Chen, Shuangyu Xie, Zehan Ma, Pannag R. Sanketi, Ken Goldberg
Whose View of Safety? A Deep DIVE Dataset for Pluralistic Alignment of Text-to-Image Models
Charvi Rastogi, Tian Huey Teh, Pushkar Mishra, Roma Patel, Ding Wang, Mark Díaz, Alicia Parrish,
Aida Mostafazadeh Davani, Zoe Ashwood, Michela Paganini, Vinodkumar Prabhakaran, Verena Rieser, Lora Aroyo
Datasets & Benchmarks
Evaluating Generalization Capabilities of LLM-Based Agents in Mixed-Motive Scenarios Using Concordia
Chandler Smith, Marwa Abdulhai, Manfred Diaz, Marko Tesic, Rakshit S. Trivedi, Alexander Sasha Vezhnevets, Lewis Hammond, Jesse Clifton, Minsuk Chang, Edgar A. Duéñez-Guzmán, John P. Agapiou, Jayd Matyas, Danny Karmon, Dylan Hadfield-Menell, Natasha Jaques, Tim Baarslag, Jose Hernandez-Orallo, Joel Z. Leibo
GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights
Shengbo Gong, Juntong Ni, Noveen Sachdeva, Carl Yang, Wei Jin
HouseLayout3D: A Benchmark and Training-free Baseline for 3D Layout Estimation in the Wild
A. Feder Cooper, Christopher A. Choquette-Choo, Miranda Bogen, Kevin Klyman, Matthew Jagielski, Katja Filippova, Ken Ziyu Liu, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Eleni Triantafillou, Peter Kairouz, Nicole Mitchell, Niloofar Mireshghallah, Abigail Z. Jacobs, James Grimmelmann, Vitaly Shmatikov, Christopher De Sa, Ilia Shumailov, Andreas Terzis, Solon Barocas, Jennifer Wortman Vaughan, Danah Boyd, Yejin Choi, Sanmi Koyejo, Fernando Delgado, Percy Liang, Daniel E. Ho, Pamela Samuelson, Miles Brundage, David Bau, Seth Neel, Hanna Wallach, Amy B. Cyphert, Mark A. Lemley, Nicolas Papernot, Katherine Lee
Massive Sound Embedding Benchmark (MSEB)
Georg Heigold, Ehsan Variani, Tom Bagby, Cyril Allauzen, Ji Ma, Shankar Kumar, Michael Riley
Meta-World+: An Improved, Standardized, RL Benchmark
Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Zhanpeng He, Tianhe Yu, Ryan Julian, K.R. Zentner, Jordan Terry, Isaac Woungang, Nariman Farsad, Pablo Samuel Castro
NAVIX: Scaling MiniGrid Environments with JAX
Eduardo Pignatelli, Jarek Liesen, Robert Tjarko Lange, Chris Lu, Pablo Samuel Castro, Laura Toni
RADAR: Benchmarking Language Models on Imperfect Tabular Data
Ken Gu*, Zhihan Zhang, Kate Lin, Yuwei Zhang, Akshay Paruchuri, Hong Yu, Mehran Kazemi, Kumar Ayush, A. Ali Heydari, Maxwell A. Xu, Girish Narayanswamy, Yun Liu, Ming-Zher Poh, Yuzhe Yang, Mark Malhotra, Shwetak Patel, Hamid Palangi, Xuhai Xu, Daniel McDuff, Tim Althoff, Xin Liu
Risk Management for Mitigating Benchmark Failure Modes: BenchRisk
Sean McGregor, Victor Lu, Vassil Tashev, Armstrong Foundjem, Aishwarya Ramasethu, Mahdi Kazemi, Chris Knotz, Kongtao Chen, Alicia Parrish, Anka Reuel, Heather Frase
QuestBench: Can LLMs Ask the Right Question to Acquire Information in Reasoning Tasks?
Belinda Z. Li*, Been Kim, Zi Wang
Position Papers
Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy and Research
A. Feder Cooper, Christopher A. Choquette-Choo, Miranda Bogen, Kevin Klyman, Matthew Jagielski, Katja Filippova, Ken Ziyu Liu, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Eleni Triantafillou, Peter Kairouz, Nicole Mitchell, Niloofar Mireshghallah, Abigail Z. Jacobs, James Grimmelmann, Vitaly Shmatikov, Christopher De Sa, Ilia Shumailov, Andreas Terzis, Solon Barocas, Jennifer Wortman Vaughan, Danah Boyd, Yejin Choi, Sanmi Koyejo, Fernando Delgado, Percy Liang, Daniel E. Ho, Pamela Samuelson, Miles Brundage, David Bau, Seth Neel, Hanna Wallach, Amy B. Cyphert, Mark A. Lemley, Nicolas Papernot, Katherine Lee
Creative AI Track
-
Wed, Dec 3 | 2:00PM — 5:00PM, Location (Creative AI Session 1)
Evaluating In Silico Creativity: An Expert Review of AI Chess CompositionsVivek Veeriah, Federico Barbero*, Marcus Chiam, Xidong Feng, Michael Dennis, Ryan Pachauri, Thomas Tumiel, Johan Obando-Ceron*, Jiaxin Shi, Shaobo Hou, Satinder Singh, Nenad Tomašev, Tom Zahavy
-
Wed, Dec 3 | 2:00PM — 5:00PM, Location (Creative AI Session 1)
Plan Before You Write: Improve LLM Writing by PlanningYoad Lewenberg, Hila Sheftel, Yael Karov
-
Thu, Dec 4 | 11:00AM — 2:00PM, Location (Creative AI Session 3)
Exploring Human-AI Conceptual Alignment Through the Prism of ChessSemyon Lomasov, Judah Goldfeder, Mehmet Hamza Erol, Matthew So, Yao Yan, Addison Howard, Nathan Kutz, Ravid Shwartz Ziv
-
Thu, Dec 4 | 2:00PM — 5:00PM, Location (Creative AI Session 3)
Live Music ModelsAdam Roberts, Chris Donahue, Kehang Han, Antoine Caillon, Brian McWilliams, Cassie Tarakajian, Ian Simon, Ilaria Manco, Jesse Engel, Noah Constant, Timo I. Denk, Yunpeng Li, Alberto Lalama, Andrea Agostinelli, Cheng-Zhi Anna Huang, Ethan Manilow, George Brower, Hakan Erdogan, Heidi Lei, Itai Rolnick, Ivan Grishchenko, Manu Orsini, Matej Kastelic, Mauricio Zuluaga, Mauro Verzetti, Michael Dooley, Ondrej Skopek, Rafael Ferrer, Savvas Petridis, Zalán Borsos
-
Thu, Dec 4 | 7:30PM — 10:30PM, Location (Creative AI Session 4)
Text to Robotic Assembly of Multi Component Objects Using 3D Generative AI and Vision Language ModelsAlexander Htet Kyaw, Richa Gupta, Dhruv Shah, Anoop Sinha, Kory Mathewson, Stefanie Pender, Sachin Chitta, Yotto Koga, Faez Ahmed, Lawrence Sass, Randall Davis
Mexico City, MX
All session times provided in CST and are subject to change
Tutorials
Tue, Dec 2 | 11:30AM — 2:00PM, Don Alberto 2
Efficient Transformers: State of The Art in Pruning, Sparse Attention, and Transformer FunnelingOrganizer: Lucas Spangher
Spotlights
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Tim Genewein, Li Kevin Wenliang, Jordi Grau-Moya, Anian Ruoss, Laurent Orseau, Marcus Hutter
Papers
Capturing Individual Human Preferences with Reward Features
André Barreto, Vincent Dumoulin, Yiran Mao, Mark Rowland, Nicolas Perez-Nieves, Bobak Shahriari, Yann Dauphin, Doina Precup, Hugo Larochelle
Dynamic Diffusion Schrödinger Bridge in Astrophysical Observational Inversions
Ye Zhu, Duo Xu, Zhiwei Deng, Jonathan C. Tan, Olga Russakovsky
Google Sponsored Affinity Workshops
Workshops
Board & Organizing Committee
-
Razvan Pascanu
- Program Chair
-
Lora Aroyo
- Datasets and Benchmarks Chair
-
Megan Risdal
- Datasets and Benchmarks Chair
-
Saining Xie
- Social Chair
-
Himabindu Lakkaraju
- Ethics Review Chair
-
Ioana Bica
- Affinity Chair
-
Dale Schuurmans
- Senior Area Chair
-
Doina Precup
- Senior Area Chair
-
Quentin Berthet
- Senior Area Chair
-
Alon Cohen
- Senior Area Chair
-
Tomer Koren
- Senior Area Chair
-
Uri Shalit
- Senior Area Chair
-
Yishay Mansour
- Senior Area Chair
-
Karthikeyan Shanmugam
- Senior Area Chair
-
Alice Oh
- Senior Area Chair
-
Amir Globerson
- Senior Area Chair
-
Ankit Singh Rawat
- Senior Area Chair
-
Aryan Mokhtari
- Senior Area Chair
-
Asma Ghandeharioun
- Senior Area Chair
-
Bo Dai
- Senior Area Chair
-
Chris Welty
- Senior Area Chair
-
Corinna Cortes
- Senior Area Chair
-
Elad Hazan
- Senior Area Chair
-
Jonathan Berant
- Senior Area Chair
-
Kaiming He
- Senior Area Chair
-
Mehryar Mohri
- Senior Area Chair
-
Ming-Hsuan Yang
- Senior Area Chair
-
Rong Ge
- Senior Area Chair
-
Samet Oymak
- Senior Area Chair
-
Srinadh Bhojanapalli
- Senior Area Chair
-
Thomas Kipf
- Senior Area Chair
-
Ulrich Paquet
- Senior Area Chair
-
Arnaud Doucet
- Senior Area Chair
-
Dima Damen
- Senior Area Chair
-
Mirella Lapata
- Senior Area Chair
-
Pushkar Mishra
- Senior Area Chair
-
Swarat Chaudhuri
- Senior Area Chair
-
Sanjiv Kumar
- Senior Area Chair
Socials
Wed, Dec 3 | 7:00PM — 9:00PM, Upper Level Ballroom 6AB
Learning Theory AllianceSpeaker: Jon Kleinberg
Wed, Dec 3 | 7:00PM — 9:00PM, Upper Level Ballroom 20D
Nonprofits Working on Openness and Trust in AIOrganizer: Peter Mattson
Wed, Dec 3 | 7:00PM — 9:00PM, Upper Level Ballroom 6CDEF
The Role of AI in Scientific Peer ReviewPanelists: Chris Bregler, Andrew McCallum, Markus Wulfmeier
Organizers: Isabelle Guyon, Amir Globerson