Jump to Content
Ming-Hsuan Yang

Ming-Hsuan Yang

Ming-Hsuan Yang is a research scientist at Google working on vision and learning problems. He is also a professor of Electrical Engineering and Computer Science at University of California, Merced. He received Longuet-Higgins Prize at IEEE CVPR 2023, Best Paper Honorable Mention in IEEE CVPR 2018 and ACM UIST 2017. He is a recipient of the Faculty Early Career Development (CAREER) Award from the National Science Foundation in 2012 and Google Faculty Award in 2009. He is a Fellow of IEEE and ACM.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Beyond SOT: Tracking Multiple Generic Objects at Once
    Christoph Mayer
    Martin Danelljan
    Vittorio Ferrari
    Luc Van Gool
    WACV'24 (2024)
    Preview abstract Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. However multiobject GOT poses its own challenges and is more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new largescale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4× faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, results and trained models are available at https://github.com/visionml/pytracking. View details
    VideoPoet: A Large Language Model for Zero-Shot Video Generation
    Dan Kondratyuk
    Lijun Yu
    Xiuye Gu
    Rachel Hornung
    Hassan Akbari
    Ming-Chang Chiu
    Josh Dillon
    Agrim Gupta
    Meera Hahn
    Anja Hauth
    David Hendon
    Alonso Martinez
    Grant Schindler
    Huisheng Wang
    Jimmy Yan
    Xuan Yang
    Lu Jiang
    arxiv Preprint (2023) (to appear)
    Preview abstract We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/ View details
    Preview abstract In this work, we introduce Semantic Pyramid AutoEncoder (SPAE) for enabling frozen LLMs to perform both understanding and generation tasks involving non-linguistic modalities such as images or videos. SPAE converts between raw pixels and interpretable lexical tokens (or words) extracted from the LLM's vocabulary. The resulting tokens capture both the semantic meaning and the fine-grained details needed for visual reconstruction, effectively translating the visual content into a language comprehensible to the LLM, and empowering it to perform a wide array of multimodal tasks. Our approach is validated through in-context learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image understanding and generation tasks. Our method marks the first successful attempt to enable a frozen LLM to generate image content while surpassing state-of-the-art performance in image understanding tasks, under the same setting, by over 25%. View details
    Preview abstract This paper introduces a Masked Generative Video Transformer, named MAGVIT, for multi-task video generation. We train a single MAGVIT model and apply it to multiple video generation tasks at inference time. To this end, two new designs are proposed: an improved 3D tokenizer model to quantize a video into spatial-temporal visual tokens, and a novel technique to embed conditions inside the mask to facilitate multi-task training. We conduct extensive experiments to demonstrate the compelling quality, efficiency, and flexibility of the proposed model. First, MAGVIT radically improves the previous best fidelity on two video generation tasks. In terms of efficiency, MAGVIT offers leading video generation speed at inference time, which is estimated to be one or two orders-of-magnitudes faster than other models. As for flexibility, we verified that a single trained MAGVIT is able to generically perform 8+ tasks at several video benchmarks from drastically different visual domains. We will open source our framework and models. View details
    Preview abstract This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub. View details
    Contextualized Spatial-Temporal Contrastive Learning with Self-Supervision
    Liangzhe Yuan
    Rui Qian
    Yin Cui
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022), pp. 13977-13986
    Preview abstract Modern self-supervised learning algorithms typically enforce persistency of instance representations across views. While being very effective on learning holistic image and video representations, such an objective becomes sub-optimal for learning spatio-temporally fine-grained features in videos, where scenes and instances evolve through space and time. In this paper, we present Contextualized Spatio-Temporal Contrastive Learning (ConST-CL) to effectively learn spatio-temporally fine-grained video representations via self-supervision. We first design a region-based pretext task which requires the model to transform in-stance representations from one view to another, guided by context features. Further, we introduce a simple network design that successfully reconciles the simultaneous learning process of both holistic and local representations. We evaluate our learned representations on a variety of downstream tasks and show that ConST-CL achieves competitive results on 6 datasets, including Kinetics, UCF, HMDB, AVA-Kinetics, AVA and OTB. View details
    Preview abstract Recent years have witnessed the rapid progress of generative adversarial networks (GANs). However, the success of the GAN models hinges on a large amount of training data. This work proposes a regularization approach for training robust GAN models on limited data. We theoretically show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data. Extensive experiments on several benchmark datasets demonstrate that the proposed regularization scheme 1) improves the generalization performance and stabilizes the learning dynamics of GAN models under limited training data, and 2) complements the recent data augmentation methods. These properties facilitate training GAN models to achieve state-of-the-art performance when only limited training data of the ImageNet benchmark is available. View details
    Preview abstract Most video super-resolution methods focus on restoring high-resolution video frames from low-resolution videos without taking into account compression. However, most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited. In this paper, we propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression. The proposed model consists of three modules for video super-resolution: bi-directional recurrent warping, detail-preserving flow estimation, and Laplacian enhancement. All these three modules are used to deal with compression properties such as the location of the intra-frames in the input and smoothness in the output frames. For thorough performance evaluation, we conducted extensive experiments on standard datasets with a wide range of compression rates, covering many real video use cases. We showed that our method not only recovers high-resolution content on uncompressed frames from the widely-used benchmark datasets, but also achieves state-of-the-art performance in super-resolving compressed videos based on numerous quantitative metrics. We also evaluated the proposed method by simulating streaming from YouTube to demonstrate its effectiveness and robustness. The source codes and trained models are available at https://github.com/google-research/googleresearch/tree/master/comisr. View details
    Preview abstract Image generation from scene description is a cornerstone technique for the controlled generation, which is beneficial to applications such as content creation and image editing. In this work, we aim to synthesize images from scene description with retrieved patches as reference. We propose a differentiable retrieval module. With the differentiable retrieval module, we can (1) make the entire pipeline end-to-end trainable, enabling the learning of better feature embedding for retrieval; (2) encourage the selection of mutually compatible patches with additional objective functions. We conduct extensive quantitative and qualitative experiments to demonstrate that the proposed method can generate realistic and diverse images, where the retrieved patches are reasonable and mutually compatible. View details
    Preview abstract Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the desired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation. View details
    Learnable Cost Volume Using the Cayley Representation
    Taihong Xiao
    Jinwei Yuan
    Xin-Yu Zhang
    Kehan Xu
    The European Conference on Computer Vision (ECCV) (2020)
    Preview abstract Cost volume is an essential component of recent deep models for optical flow estimation and is usually constructed by calculating the inner product between two feature vectors. However, the standard inner product in the commonly-used cost volume may limit the representation capacity of flow models because it neglects the correlation among different channel dimensions and weighs each dimension equally. To address this issue, we propose a learnable cost volume (LCV) using an elliptical inner product, which generalizes the standard inner product by a positive definite kernel matrix. To guarantee its positive definiteness, we perform spectral decomposition on the kernel matrix and re-parameterize it via the Cayley representation. The proposed LCV is a lightweight module and can be easily plugged into existing models to replace the vanilla cost volume. Experimental results show that the LCV module not only improves the accuracy of state-of-the-art models on standard benchmarks, but also promotes their robustness against illumination change, noises, and adversarial perturbations of the input signals. View details
    Inserting videos into videos
    Donghoon Lee
    IEEE Conference on Computer Vision and Pattern Recognition (2019)
    Preview abstract In this paper, we introduce a new problem of manipulating a given video by inserting other videos into it. Our main task is, given an object video and a scene video, inserting the object video at a user-specified location in the scene video so that the resulting video looks realistic. We aim to handle different object motions and complex backgrounds without expensive segmentation annotations. As it is difficult to collect training pairs for this problem, we synthesize fake training pairs that can provide helpful supervisory signals when training a neural network with unpaired real data. The proposed network architecture can take both real and fake pairs as input and perform both supervised and unsupervised training in adversarial learning scheme. To synthesize a realistic video, the network renders each frame based on the current input and previous frames. Under this framework, we observe that injecting noises into previous frames while generating the current frame stabilizes the training. We perform experiments on real-world videos such as object tracking or person re-identification benchmark databases. Results show that the proposed algorithm can synthesize a long sequence of a realistic video by inserting the given object video. View details
    Eidetic 3D LSTM: A Model for Video Prediction and Beyond
    Yunbo Wang
    Lu Jiang
    Jia Li
    Mingsheng Long
    Fei-Fei Li
    ICLR (2019)
    Preview abstract Spatiotemporal predictive learning, though long considered to be a promising self-supervised feature learning method, seldom shows its effectiveness beyond future video prediction. The reason is that it is difficult to learn good representations for both short-term frame dependency and long-term high-level relations. We present a new model, Eidetic 3D LSTM (E3D-LSTM), that integrates 3D convolutions into RNNs. The encapsulated 3D-Conv makes local perceptrons of RNNs motion-aware and enables the memory cell to store better short-term features. For long-term relations, we make the present memory state interact with its historical records via a gate-controlled self-attention module. We describe this memory transition mechanism eidetic as it is able to effectively recall the stored memories across multiple time stamps even after long periods of disturbance. We first evaluate the E3D-LSTM network on widely-used future video prediction datasets and achieve the state-of-the-art performance. Then we show that the E3D-LSTM network also performs well on the early activity recognition to infer what is happening or what will happen after observing only limited frames of video. This task aligns well with video prediction in modeling action intentions and tendency. View details
    Diverse Image-to-Image Translation via Disentangled Representations
    Hsin-Ying Lee
    Hung-Yu Tseng
    Jia-Bin Huang
    Maneesh Singh
    European Conference on Computer Vision (2018) (to appear)
    Preview abstract Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets. View details
    SPLATNet: Sparse Lattice Networks for Point Cloud Processing
    Hang Su
    Varun Jampani,
    Deqing Sun, Subhransu
    Maji, Evangelos
    Kalogerakis,
    Jan Kautz
    IEEE Conference on Computer Vision and Pattern Recognition (2018)
    Preview abstract We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naiıvely applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques. View details
    No Results Found