Google at NeurIPS 2024
Google at NeurIPS 2024
Google Research is proud to be a Diamond Sponsor of the 38th annual Conference on Neural Information Processing Systems (NeurIPS 2024). NeurIPS 2024 is being held Tuesday, December 10th through Sunday, December 15th in Vancouver, British Columbia. Google Research has a strong presence at this year’s conference with over 120 accepted papers and active involvement in over 10 competitions, workshops and tutorials. Google Research is also proud to be a Sponsor for both the Women in Machine Learning and LatinX in AI workshops. We look forward to sharing some of our extensive ML research and expanding our partnership with the broader ML research community.
Attending NeurIPS 2024? Come visit the Google Research booth (#133) to learn more about the exciting work we’re doing to solve some of the field’s most interesting challenges. Visit the @GoogleAI X and Google Research LinkedIn accounts to find out more about the Google Research booth activities at NeurIPS 2024.
Take a look below to learn more about Google's technical participation at NeurIPS 2024 (Google affiliations in bold).
All session times are provided in PST.
Board & Organizing Committee
-
Corinna Cortes
- Executive Board Member
-
Amir Globerson
- General Chair
-
Dina Bashkirova
- Competition Track Program Committee
-
Gregory Clark
- Competition Track Program Committee
-
Ryan Holbrook
- Competition Track Program Committee
-
Alon Cohen
- Senior Area Chairs
-
Ankit Singh Rawat
- Senior Area Chairs
-
Chris Welty
- Senior Area Chairs
-
Corinna Cortes
- Senior Area Chairs
-
Fei Sha
- Senior Area Chairs
-
Inderjit Dhillon
- Senior Area Chairs
-
Katherine Heller
- Senior Area Chairs
-
Mehryar Mohri
- Senior Area Chairs
-
Sanjiv Kumar
- Senior Area Chairs
-
Srinadh Bhojanapalli
- Senior Area Chairs
-
Tomer Koren
- Senior Area Chairs
-
Yishay Mansour
- Senior Area Chairs
-
Aditya Menon
- Area Chairs
-
Afshin Rostamizadeh
- Area Chairs
-
Alekh Agarwal
- Area Chairs
-
Alex Kulesza
- Area Chairs
-
Anton Tsitsulin
- Area Chairs
-
Badih Ghazi
- Area Chairs
-
Blake Richards
- Area Chairs
-
Bo Li
- Area Chairs
-
Chiyuan Zhang
- Area Chairs
-
Craig Boutilier
- Area Chairs
-
Cristóbal Guzmán
- Area Chairs
-
Cyrus Rashtchian
- Area Chairs
-
Da-Cheng Juan
- Area Chairs
-
Daniel McDuff
- Area Chairs
-
D. Sculley
- Area Chairs
-
Di Wang
- Area Chairs
-
Du Tran
- Area Chairs
-
Federico Tombari
- Area Chairs
-
Felix Yu
- Area Chairs
-
Guy Tennenholtz
- Area Chairs
-
Jieming Mao
- Area Chairs
-
Joonseok Lee
- Area Chairs
-
Julian Zimmert
- Area Chairs
-
Lalit Jain
- Area Chairs
-
Markus Freitag
- Area Chairs
-
Matthew Fahrbach
- Area Chairs
-
Meisam Razaviyayn
- Area Chairs
-
Natalia Ponomareva
- Area Chairs
-
Ni Lao
- Area Chairs
-
Paul Duetting
- Area Chairs
-
Pasin Manurangsi
- Area Chairs
-
Ranjay Krishna
- Area Chairs
-
Richard Nock
- Area Chairs
-
Sami Abu-El-Haija
- Area Chairs
-
Sergei Vassilvitskii
- Area Chairs
-
Shay Moran
- Area Chairs
-
Silvio Lattanzi
- Area Chairs
-
Sushant Sachdeva
- Area Chairs
-
Umar Syed
- Area Chairs
-
Vladimir Braverman
- Area Chairs
-
Wittawat Jitkrittum
- Area Chairs
-
Xiance Si
- Area Chairs
-
Xingchen Wan
- Area Chairs
-
Zheng Xu
- Area Chairs
-
Zhiyuan Li
- Area Chairs
Expo Talks
-
Tue, Dec 10 | 4:00PM — 5:00PM, West Meeting Room 220-222
Graph Reasoning in Large Language ModelsSpeakers: Bryan Perozzi, Clayton Sanford, Jonathan Halcrow
-
Wed, Dec 11 | 4:30PM — 5:30PM, West Meeting Room 109-110
Can AI Save Us From Ourselves? Generative AI and Content ModerationSpeakers: Diman Ghazi, Salah Ahmed
-
Wed, Dec 11 | 4:30PM — 5:30PM, East Meeting Room 1-3
Empirical Rigor at Scale – or, How Not to Fool YourselfSpeaker: D. Sculley
Orals
-
Wed, Dec 11 | 10:00AM — 11:00AM, West Meeting Room 211-214 (Oral Session 1C)
Reinforcement Learning Under Latent Dynamics: Toward Statistical and Algorithmic ModularityPhilip Amortila, Dylan J. Foster, Nan Jiang, Akshay Krishnamurthy, Zakaria Mhammedi
-
Wed, Dec 11 | 10:00AM — 11:00AM, West Meeting Room 211-214 (Oral Session 1C)
The Road Less ScheduledAaron Defazio, Xingyu Alice Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, Ashok Cutkosky
-
Thu, Dec 12 | 3:30PM — 4:30PM, West Exhibition Hall C, B3 (Oral Session 4B)
CAT3D: Create Anything in 3D with Multi-View Diffusion ModelsRuiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin Brualla, Pratul P. Srinivasan, Jonathan T. Barron, Ben Poole
-
Fri, Dec 13 | 3:30PM — 4:30PM, East Ballroom A, B (Oral Session 6A)
MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-MakingYubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon Lee, Marzyeh Ghassemi, Cynthia Breazeal, Hae Won Park
Affinity Workshops
-
Tues, Dec 10 8:00AM - 5:00PM, West Meeting Room 202-204
LatinX in AI Research at NeurIPS 2024Keynote Speaker: Melissa Montes
Panelists: Andrew Tomkins, Corinna Cortes, Serena Wang
Platinum Sponsor: Google Research
-
Tues, Dec 10 8:00AM - 5:00PM, West Meeting Room 211-214
19th Women in Machine Learning Workshop (WiML 2024)Platinum Sponsor: Google
-
Tues, Dec 10 10:00AM - 3:00PM, West Meeting Room 201
Global South in AIKeynote Speaker: Bonaventure Dossou
-
Sun, Dec 15 8:15AM, East Exhibition Hall A
Safe Generative AIOrganizing Committee: Bonaventure Dossou
Workshops
-
Sat, Dec 14 | 8:15AM — 5:30PM, West Meeting Room 121, 122
Socially Responsible Language Modelling ResearchSpeaker: Rida Qadri
-
Sun, Dec 15 | 8:15AM — 5:30PM, West Meeting Room 201
Machine Learning for SystemsSpeaker: Jeff Dean
Organizer: Patrick Musau
Steering Committee: Milad Hashemi
-
Sun, Dec 15 | 8:15AM — 5:30PM, West Meeting Room 220-222
Time Series in the Age of Large ModelsSpeaker: Tomas Pfister
-
Sun, Dec 15 | 8:15AM — 5:30PM, West Ballroom B
System-2 Reasoning at ScaleSpeaker & Panelist: François Chollet
Tutorials & Competitions
-
Tue, Dec 10 | 9:30AM — 12:00PM, East Exhibition Hall C
Evaluating Large Language Models - Principles, Approaches, and ApplicationsBo Li, Irina Sigler, Yuan (Emily) Xue
-
Sat, Dec 14 | 9:00AM — 12:00PM, West Meeting Room 209
MyoChallenge 2024: Physiological Dexterity and Agility in Bionic HumansSponsor: Google Cloud
-
Sat, Dec 14 | 1:30PM — 4:30PM, West Meeting Room 209
Lux AI Season 3: Multi-Agent Meta Learning at ScaleOrganizers: Stone Tao, Akarsh Kumar, Bovard Doerschuk-Tiberi, Isabelle Pan, Addison Howard, Hao Su
Spotlight Papers
3D Gaussian Splatting as Markov Chain Monte Carlo
Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Yang-Che Tseng, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, Kwang Moo Yi
Croissant: A Metadata Format for ML-Ready Datasets (see blog post)
Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Joan Giner-Miguelez, Pieter Gijsbers, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Michael Kuchnik, Satyapriya Krishna, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeff Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
Linear Regression Using Heterogeneous Data Batches
Ayush Jain*, Rajat Sen, Weihao Kong, Abhimanyu Das, Alon Orlitsky+
Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image Diffusion Models
Ziyi Wu*, Yulia Rubanova, Rishabh Kabra, Drew A. Hudson, Igor Gilitschenski, Yusuf Aytar, Sjoerd van Steenkiste, Kelsey R. Allen, Thomas Kipf
Time-Reversal Provides Unsupervised Feedback to LLMs
Yerram Varun, Rahul Madhavan*, Sravanti Addepalli, Arun Suggala, Karthikeyan Shanmugam, Prateek Jain
Moving Off-the-Grid: Scene-Grounded Video Representations
Sjoerd van Steenkiste, Daniel Zoran, Yi Yang, Yulia Rubanova, Rishabh Kabra, Carl Doersch, Dilara Gokay, Joseph Heyward, Etienne Pot, Klaus Greff, Drew A. Hudson, Thomas Albert Keck, Joao Carreira, Alexey Dosovitskiy*, Mehdi S. M. Sajjadi, Thomas Kipf
Who's Asking? User Personas and the Mechanics of Latent Misalignment
Asma Ghandeharioun, Ann Yuan, Marius Guerard, Emily Reif, Michael A. Lepori, Lucas Dixon
Spider2-V: How Far Are Multimodal Agents from Automating Data Science and Engineering Workflows?
Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xiong Xinzhuang, Hanchong Zhang, Wenjing Hu, Yuchen Mao, Tianbao Xie, Hongshen Xu, Danyang Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Victor Zhong, Lu Chen, Kai Yu, Tao Yu
The Power of Resets in Online Reinforcement Learning
Zakaria Mhammedi, Dylan J. Foster, Alexander Rakhlin
Aligner-Encoders: Self-Attention Transformers Can Be Self-Transducers
Adam Stooke, Rohit Prabhavalkar, Khe Chai Sim, Pedro Moreno Mengibar*
Auditing Privacy Mechanisms via Label Inference Attacks
Róbert Busa-Fekete, Travis Dick, Claudio Gentile, Andrés Muñoz Medina, Adam Smith, Marika Swanberg
Learning Generalized Linear Programming Value Functions
Tu Nguyen, Joey Huchette, Christian Tjandraatmadja
On the Effects of Data Scale on UI Control Agents
Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, Oriana Riva
Papers
Ad Auctions for LLMs via Retrieval Augmented Generation
MohammadTaghi Hajiaghayi, Sébastien Lahaie, Keivan Rezaei, Suho Shin
A Decision-Language Model (DLM) for Dynamic Restless Multi-Armed Bandit Tasks in Public Health
Nikhil Behari, Edwin Zhang, Yunfan Zhao, Aparna Taneja, Dheeraj Mysore Nagaraj, Milind Tambe
Density-Based User Representation Using Gaussian Process Regression for Multi-Interest Personalized Retrieval
Haolun Wu*, Ofer Meshi, Masrour Zoghi, Fernando Diaz, Xue Liu, Craig Boutilier, Maryam Karimzadehgan
Differentially Private Set Representations
Sarvar Patel, Giuseppe Persiano, Joon Young Seo, Kevin Yeo
Efficient Minimum Bayes Risk Decoding Using Low-Rank Matrix Completion Algorithms
Firas Trabelsi, David Vilar, Mara Finkelstein, Markus Freitag
Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers
Krzysztof Choromanski, Arijit Sehanobish, Somnath Basu Roy Chowdhury, Han Lin, Avinava Dubey, Tamas Sarlos, Snigdha Chaturvedi
Linear Transformers Are Versatile In-Context Learners
Max Vladymyrov, Johannes Von Oswald, Mark Sandler, Rong Ge
Near-Optimal Streaming Heavy-Tailed Statistical Estimation with Clipped SGD
Aniket Das, Dheeraj Mysore Nagaraj, Soumyabrata Pal, Arun Suggala, Prateek Varshney*
PRODuctive Bandits: Importance Weighting No More
Julian Zimmert, Teodor V. Marinov
SequentialAttention++ for Block Sparsification: Differentiable Pruning Meets Combinatorial Optimization
Taisuke Yasuda*, Kyriakos Axiotis, Gang Fu, MohammadHossein Bateni, Vahab Mirrokni
SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers
Shraman Pramanick*, Rama Chellappa, Subhashini Venugopalan
Stratified Prediction-Powered Inference for Effective Hybrid Evaluation of Language Models
Adam Fisch R., Joshua Maynez, R. Alex Hofer, Bhuwan Dhingra, Amir Globerson, William W. Cohen
Subject-Driven Text-to-Image Generation via Preference-Based Reinforcement Learning
Yanting Miao, William Loh, Suraj Kothawade, Pascal Poupart, Abdullah Rashwan, Yeqing Li
Understanding Transformer Reasoning Capabilities via Graph Algorithms
Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, Vahab Mirrokni
UniAR: A Unified Model for Predicting Human Attention and Responses on Visual Content (see blog post)
Peizhao Li*, Junfeng He, Gang Li, Rachit Bhargava, Shaolei Shen, Nachiappan Valliappan, Youwei Liang*, Hongxiang Gu, Venky Ramachandran, Golnaz Farhadi, Yang Li, Kai Kohlhoff, Vidhya Navalpakkam
Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference
Sam Griesemer, Defu Cao, Zijun Cui, Carolina Osorio, Yan Liu
Autobidder's Dilemma: Why More Sophisticated Autobidders Lead to Worse Auction Efficiency
Yuan Deng, Jieming Mao, Vahab Mirrokni, Hanrui Zhang, Song Zuo
Can Large Language Model Agents Simulate Human Trust Behavior
Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Shiyang Lai, Kai Shu, Jindong Gu, Adel Bibi, Ziniu Hu, David Jurgens, James Evans, Philip Torr, Bernard Ghanem, Guohao Li
Contracting with a Learning Agent
Guru Guruganesh, Yoav Kolumbus, Jon Schneider, Inbal Talgam-Cohen, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Joshua R. Wang, S. Matthew Weinberg
Credit Attribution and Stable Compression
Roi Livni, Shay Moran, Kobbi Nissim, Chirag Pabbaraju
Differentially Private Optimization with Sparse Gradients
Badih Ghazi, Cristóbal A Guzmán, Pritish Kamath, Ravi Kumar, Pasin Manurangsi
Doing Experiments and Revising Rules with Natural Language and Probabilistic Reasoning
Wasu Top Piriyakulkij, Cassidy Langenfeld, Tuan Anh Le, Kevin Ellis
Efficiency of the First-Price Auction in the Autobidding World
Yuan Deng, Jieming Mao, Vahab Mirrokni, Hanrui Zhang, Song Zuo
EM Distillation for One-Step Diffusion Models
Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy, Tim Salimans, Ben Poole, Ruiqi Gao
Extending Video Masked Autoencoders to 128 frames (see blog post)
Nitesh Bharadwaj Gundavarapu, Luke Friedman, Raghav Goyal*, Chaitra Hegde, Eirikur Agustsson, Sagar M. Waghmare, Mikhail Sirotenko, Ming-Hsuan Yang, Tobias Weyand, Boqing Gong, Leonid Sigal*
FineStyle: Fine-Grained Controllable Style Personalization for Text-to-Image Models
Gong Zhang, Kihyuk Sohn*, Meera Hah, Humphrey Shi, Irfan Essa
Fully Unconstrained Online Learning
Ashok Cutkosky, Zak Mhammedi
In-N-Out: Lifting D Diffusion Prior for D Object Removal via Tuning-Free Latents Alignment
Dongting Hu, Huan Fu, Jiaxian Guo, Liuhua Peng, Tingjin Chu, Feng Liu, Tongliang Liu, Mingming Gong
Learning-Augmented Algorithms with Explicit Predictors
Marek Elias, Haim Kaplan, Yishay Mansour, Shay Moran
Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems
Vincent Cohen-Addad, Tommaso d'Orsi, Anupam Gupta, Euiwoong Lee, Debmalya Panigrahi
Multi-Turn Reinforcement Learning from Preference Human Feedback
Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila Noga, Orgad Keller, Bilal Piot, Idan Szpektor, Avinatan Hassidim, Yossi Matias, Rémi Munos
Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling
Mahdi Karami, Ali Ghodsi
Provable Benefits of Complex Parameterizations for Structured State Space Models
Yuval Ran-Milo, Eden Lumbroso, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen
Realizable H-Consistent and Bayes-Consistent Loss Functions for Learning to Defer
Anqi Mao, Mehryar Mohri, Yutao Zhong
The Impact of Geometric Complexity on Neural Collapse in Transfer Learning
Michael Munn, Benoit Dherin, Javier Gonzalvo
Towards Open-Vocabulary Semantic Segmentation Without Semantic Labels
Heeseong Shin, Chaehyun Kim, Sunghwan Hong, Seokju Cho, Anurag Arnab, Paul Hongsuck Seo, Seungryong Kim
Semantic Routing via Autoregressive Modeling
Eric Zhao, Pranjal Awasthi, Zhengdao Chen, Sreenivas Gollapudi, Daniel Delling
Solving Sparse & High-Dimensional-Output Regression via Compression
Renyuan Li, Zhehui Chen, Guanyi Wang
Text-Space Graph Foundation Models: Comprehensive Benchmarks and New Insights
Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton Tsitsulin, Bryan Perozzi, Hui Liu, Jiliang Tang
Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models
Nitzan Guetta Bitton, Aviv Slobodkin, Aviya Maimon, Eliya Habba, Royi Rassin, Yonatan Bitton, Idan Szpektor, Amir Globerson, Yuval Elovici
Beating Adversarial Low-Rank MDPs with Unknown Transition and Bandit Feedback
Haolin Liu, Zakaria Mhammedi, Chen-Yu Wei, Julian Zimmert
Binary Search with Distributional Predictions
Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Aidin Niaparast, Sergei Vassilvitskii
Cardinality-Aware Set Prediction and Top-k Classification
Corinna Cortes, Anqi Mao, Christopher Mohri, Mehryar Mohri, Yutao Zhong
Causal Language Modeling Can Elicit Search and Reasoning Capabilities on Logic Puzzles
Kulin Shah*, Nishanth Dikkala, Xin Wang, Rina Panigrahy
Chain of Agents: Large Language Models Collaborating on Long-Context Tasks
Yusen Zhang*, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, Sercan O Arik
DynaMITE-RL: A Dynamic Model for Improved Temporal Meta-Reinforcement Learning
Anthony Liang, Guy Tennenholtz, ChihWei Hsu, Yinlam Chow, Erdem Biyik, Craig Boutilier
e-COP : Episodic Constrained Optimization of Policies
Akhil Agnihotri, Rahul Jain, Deepak Ramachandran, Sahil Singla
Even Sparser Graph Transformers
Hamed Shirzad, Honghao Lin, Balaji Venkatachalam*, Ameya Velingker*, David Woodruff, Danica J. Sutherland
Exponential Quantum Communication Advantage in Distributed Inference and Learning
Dar Gilboa, Hagay Michaeli, Daniel Soudry, Jarrod Ryan McClean
Fast Rates for Bandit PAC Multiclass Classification
Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran
Fine-grained Analysis of In-context Linear Estimation: Data, Architecture, and Beyond
Yingcong Li, Ankit Singh Rawat, Samet Oymak
Generative Forests
Richard Nock, Mathieu Guillame-Bert
Geometric-Averaged Preference Optimization for Soft Preference Labels
Hiroki Furuta*, Kuang-Huei Lee, Shixiang Shane Gu, Yutaka Matsuo, Aleksandra Faust, Heiga Zen, Izzeddin Gur
MAC Advice for Facility Location Mechanism Design
Zohar Barak, Anupam Gupta, Inbal Talgam-Cohen
On the Inductive Bias of Stacking Towards Improving Reasoning
Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosefi, Sashank J. Reddi, Sanjiv Kumar
Sketching for Distributed Deep Learning: A Sharper Analysis
Mayank Shrivastava, Berivan Isik, Qiaobo Li, Sanmi Koyejo, Arindam Banerjee
Small Steps No More: Global Convergence of Stochastic Gradient Bandits for Arbitrary Learning Rates
Jincheng Mei, Bo Dai, Alekh Agarwal, Sharan Vaswani, Anant Raj, Csaba Szepesvari, Dale Schuurmans
TableRAG: Million-Token Table Understanding with Language Models
Si-An Chen*, Lesly Miculicich, Julian Martin Eisenschlos, Zifeng Wang, Zilong Wang*, Yanfei Chen, Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, Tomas Pfister
Tight Bounds for Learning RUMs from Small Slates
Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically
Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum S Anderson, Yaron Singer, Amin Karbasi
T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback
Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhu Chen, William Yang Wang
Universal Rates for Active Learning
Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas
Warm-Up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes
Asaf Cassel, Aviv Rosenberg
Weight Decay Induces Low-Rank Attention Layers
Seijin Kobayashi, Yassir Akram, Johannes Von Oswald
Stylebreeder: Exploring and Democratizing Artistic Styles Through Text-to-Image Models
Matthew Zheng, Enis Simsar, Hidir Yesiltepe, Federico Tombari, Joel Simon, Pinar Yanardag
TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools
Avi Caciularu, Alon Jacovi, Eyal Ben-David, Sasha Goldshtein, Tal Schuster, Jonathan Herzig, Gal Elidan, Amir Globerson
Accelerating Blockwise Parallel Language Models with Draft Refinement
Taehyeon Kim*, Ananda Theertha Suresh, Kishore A Papineni, Michael Riley, Sanjiv Kumar, Adrian Benton
How to Boost Any Loss Function
Richard Nock, Yishay Mansour
Hyperbolic Embeddings of Supervised Models
Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth
Efficient Centroid-Linkage Clustering
Mohammadhossein Bateni, Laxman Dhulipala, Willem Fletcher, Kishen N Gowda, D Ellis Hershkowitz, Rajesh Jayaram, Jakub Lacki
Embedding-Aligned Language Models
Guy Tennenholtz, Yinlam Chow, Chih-Wei Hsu, Lior Shani, Ethan Liang, Craig Boutilier
Enhancing Robustness of Last Layer Two-Stage Fair Model Corrections
Nathaniel Stromberg, Rohan Ayyagari, Sanmi Koyejo, Richard Nock, Lalitha Sankar
LocCa: Visual Pretraining with Location-Aware Captioners
Bo Wan, Michael Tschannen, Yongqin Xian, Filip Pavetic, Ibrahim Alabdulmohsin, Xiao Wang, André Susano Pinto, Andreas Peter Steiner, Lucas Beyer, Xiaohua Zhai
MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encoding
Rajesh Jayaram, Laxman Dhulipala, Majid Hadian, Jason Lee, Vahab Mirrokni
Randomized Truthful Auctions with Learning Agents
Gagan Aggarwal, Anupam Gupta, Andres Perlroth, Grigoris Velegkas*
Self-Guided Masked Autoencoder
Jeongwoo Shin, Inseo Lee, Junho Lee, Joonseok Lee
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chiyuan Zhang
SCOREQ: Speech Quality Assessment with Contrastive Regression
Alessandro Ragano, Jan Skoglund, Andrew Hines
Structured Unrestricted-Rank Matrices for Parameter Efficient Finetuning
Arijit Sehanobish, Kumar Avinava Dubey, Krzysztof Marcin Choromanski, Somnath Basu Roy Chowdhury, Deepali Jain, Vikas Sindhwani, Snigdha Chaturvedi
A Universal Growth Rate for Learning with Smooth Surrogate Losses
Anqi Mao, Mehryar Mohri, Yutao Zhong
kGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution
Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivancic, Junfeng Yang, Baishakhi Ray
Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild
Xinyu Zhao, Guoheng Sun, Ruisi Cai, Yukun Zhou, Pingzhi Li, Peihao Wang, Bowen Tan, Yexiao He, Li Chen, Yi Liang, Beidi Chen, Binhang Yuan, Hongyi Wang, Ang Li, Zhangyang Wang, Tianlong Chen
Direct Consistency Optimization for Robust Customization of Text-to-Image Diffusion models
Kyungmin Lee, Sangkyung Kwak, Kihyuk Sohn*, Jinwoo Shin
Fine-Grained Analysis of In-Context Linear Estimation
Yingcong Li, Ankit Singh Rawat, Samet Oymak
Improved Sample Complexity for Multiclass PAC Learning
Steve Hanneke, Shay Moran, Qian Zhang
IllumiNeRF 3D Relighting Without Inverse Rendering
Xiaoming Zhao*, Pratul P. Srinivasan, Dor Verbin, Keunhong Park, Ricardo Martin-Brualla, Philipp Henzler
Multi-Label Learning with Stronger Consistency Guarantees
Anqi Mao, Mehryar Mohri, Yutao Zhong
Optical Diffusion Models for Image Generation
Ilker Oguz, Niyazi Ulas Dinc, Mustafa Yildirim, Junjie Ke, Innfarn Yoo, Qifei Wang, Feng Yang, Christophe Moser, Demetri Psaltis
ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization
Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir Yazdanbakhsh, Yingyan Celine Lin
SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models
Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-Sung Ferng, Heinrich Jiang, Yiran Chen
Teach Better or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization
Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan O Arik
A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation
Gwanghyun Kim*, Alonso Martinez, Yu-Chuan Su, Brendan Jou, Jose Lezama, Agrim Gupta*, Lijun Yu*, Lu Jiang*, Aren Jansen, Jacob C Walker, Krishna Somandepalli*
Beyond Aesthetics: Cultural Competence in Text-to-Image Models
Nithish Kannen, Arif Ahmad*, Marco Andreetto, Vinodkumar Prabhakaran, Utsav Prabhu, Adji Bousso Dieng, Pushpak Bhattacharyya, Shachi Dave
ReMI: A Dataset for Reasoning with Multiple Images
Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Sreenivas Gollapudi, Dee Guo, Ahmed Qureshi
Amortized Planning with Large-Scale Transformers: A Case Study on Chess
Anian Ruoss*, Gregoire Deletang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot Catt, John Reid, Cannada A. Lewis, Joel Veness, Tim Genewein
A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback with Robustness to Excessive Delays
Saeed Masoudian, Julian Zimmert, Yevgeny Seldin
Communication Efficient Distributed Training with Distributed Lion
Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krishnamoorthi, Qiang liu
Convergence of No-Swap-Regret Dynamics in Self-Play
Renato Paes Leme, Georgios Piliouras, Jon Schneider
Position Coupling: Improving Length Generalization of Arithmetic Transformers Using Task Structure
Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, Chulhee Yun
UniSDF: Unifying Neural Representations for High-Fidelity D Reconstruction of Complex Scenes with Reflections
Fangjinhua Wang*, Marie-Julie Rakotosaona, Michael Niemeyer, Richard Szeliski, Marc Pollefeys, Federico Tombari
UQE: A Query Engine for Unstructured Databases
Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, Dale Schuurmans
Warm-Starting Push-Relabel
Sami Davies, Sergei Vassilvitskii, Yuyan Wang No in person session
TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning
Nemin Wu, Qian Cao, Zhangyu Wang, Zeping Liu, Yanlin Qi, Jielu Zhang, Joshua Ni, X. Angela Yao, Hongxu Ma, Lan Mu, Stefano Ermon, Tanuja Ganu, Akshay Nambi, Ni Lao, Gengchen Mai
AudioMarkBench: Benchmarking Robustness of Audio Watermarking
Hongbin Liu, Moyang Guo, Zhengyuan Jiang, Lun Wang, Neil Zhenqiang Gong
Creative AI Track
Charting the Shapes of Stories with Game Theory
Constantinos Daskalakis, Ian Gemp, Yanchen Jiang, Renato Leme, Christos Papadimitriou, Georgios Piliouras
- Tues, Dec 10 | 9:00AM - 12:00PM, East Ballroom C (Creative AI Session 1)
- Tues, Dec 10 | 1:00PM - 4:00PM, East Ballroom C (Creative AI Session 2)
Diff4Steer: Steerable Diffusion Prior for Generative Music Retrieval with Semantic Guidance
Xuchan Bao*, Judith Yue Li, Zhong Yi Wan, Kun Su, Timo Denk, Joonseok Lee, Dima Kuzmin, Fei Sha
- Wed, Dec 11 | 11:00AM - 2:00PM, East Ballroom C (Creative AI Session 3)
- Wed, Dec 11 | 4:30PM - 7:30PM, East Ballroom C (Creative AI Session 4)
The Visual-Riddles Gallery: A Challenge of AI, Creativity and Ambiguity
Nitzan Bitton Guetta, Aviv Slobodkin, Aviya Maimon, Eliya Habba, Royi Rassin, Yonatan Bitton, Idan Szpektor, Amir Globerson, Yuval Elovici
- Wed, Dec 11 | 11:00AM - 2:00PM, East Ballroom C (Creative AI Session 3)
- Wed, Dec 11 | 4:30PM - 7:30PM, East Ballroom C (Creative AI Session 4)
Dialogue with the Machine and Dialogue with the Art World: A Method for Evaluating AI as a Tool for Creativity
Rida Qadri, Piotr Mirowski, Aroussiak Gabriellan, Farbod Mehr, Huma Gupta, Pamela Karimi, Remi Denton
- Thurs, Dec 12 | 11:00AM - 2:00PM, East Ballroom C (Creative AI Session 5)
- Thurs, Dec 12 | 4:30PM - 7:30PM, East Ballroom C (Creative AI Session 6)
Google Research Booth Demo/Q&A Schedule
This schedule is subject to change. Please visit the Google Research booth (#133) for more information.
-
Tues, Dec 10 | 3:00PM — 3:30PM
Recruiting Q&APresenters: Rachel Dean, Juliana Dudas
-
Tues, Dec 10 | 4:00PM — 4:30PM
Understanding Complex Confidence IntervalsPresenter: Chris Welty
-
Tues, Dec 10 | 6:30PM — 8:00PM
Cloud AI Lightning TalksPresenters: Tomas Pfister, Hamid Palangi
-
Wed, Dec 11 | 9:30AM — 10:00AM
GenAI Powered Visual EffectsPresenter: Sarah Xu
-
Wed, Dec 11 | 11:00AM — 11:30AM
Recruiting Q&APresenters: Arely Silva, Jason Zeidan
-
Wed, Dec 11 | 12:00PM — 12:30PM
NotebookLM and ResearchPresenter: Ravin Kumar
-
Wed, Dec 11 | 12:30PM — 1:00PM
Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language ModelsPresenter: Yonatan Bitton
-
Wed, Dec 11 | 2:00PM — 2:30PM
TRINDS: A Dataset and Toolbox for Evaluating LLMs for Tropical and Infectious DiseasesPresenter: Mercy Asiedu
-
Wed, Dec 11 | 4:30PM — 5:00PM
Cloud AI Q&APresenter: Chen-Yu Lee
-
Thurs, Dec 12 | 9:30AM — 10:00AM
Gemini Customization and AgentPresenter: Emily Xue
-
Thurs, Dec 12 | 11:00AM — 11:30AM
Recruiting Q&APresenters: Rachel Dean, Juliana Dudas
-
Thurs, Dec 12 | 12:00PM — 12:30PM
Empirical Validation at Scale with Community-driven AI/ML CompetitionsPresenters: Meg Risdal, Walter Reade
-
Thurs, Dec 12 | 12:30PM — 1:00PM
Parameter Efficient Graph Encoding for Large Language ModelsPresenters: Bryan Perozzi, Sami Abu-el-haija
-
Thurs, Dec 12 | 2:00PM — 2:30PM
Generating High-Res Digital Surface Models and Roof Segmentation for Global Solar MappingPresenter: Betty Peng
*Work done while at Google