System performance

We develop the methodology that informs the roadmap, architecture and design of all computer systems deployed in Google data centers, enabling efficient utilization of our software and hardware infrastructure.

Charts

We develop the methodology that informs the roadmap, architecture and design of all computer systems deployed in Google data centers, enabling efficient utilization of our software and hardware infrastructure.

About the team

Our team guides the roadmap, architecture and design of Google’s global computer infrastructure. We bring together experts in computer architecture, machine learning, software systems, compilers and operating systems to define and build the next generation of technology that powers Google.

Our research encompasses the entire system stack, from distributed software and runtime systems to microarchitecture and circuits. We seek to propose new computing substrates and accelerators, build and optimize large-scale real-world systems, research techniques to maximize code efficiency and define new machine-learning-based systems and paradigms. Research and open-ended exploration are key aspects of our work and we seek to share this work externally with the broader research community. We publish at a wide array of conferences, including ISCA, ASPLOS, MICRO, NeurIPS, ICML and ICLR.

Team focus summaries

Featured publications

Warehouse-Scale Video Acceleration: Co-design and Deployment in the Wild
Danner Stodolsky
Jeff Calow
Jeremy Dorfman
Clint Smullen
Aki Kuusela
Aaron James Laursen
Alex Ramirez
Alvin Adrian Wijaya
Amir Salek
Anna Cheung
Ben Gelb
Brian Fosco
Cho Mon Kyaw
Dake He
David Alexander Munday
David Wickeraad
Devin Persaud
Don Stark
Drew Walton
Elisha Indupalli
Fong Lou
Hon Kwan Wu
In Suk Chong
Indira Jayaram
Jia Feng
JP Maaninen
Kyle Alan Lucke
Maire Mahony
Mark Steven Wachsler
Mercedes Tan
Narayana Penukonda
Niranjani Dasharathi
Poonacha Kongetira
Prakash Chauhan
Raghuraman Balasubramanian
Ramon Macias
Richard Ho
Rob Springer
Roy W Huffman
Sandeep Bhatia
Sarah J. Gwin
Sathish K Sekar
Srikanth Muroor
Ville-Mikko Rautio
Yolanda Ripley
Yoshiaki Hase
Yuan Li
Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Association for Computing Machinery, New York, NY, USA (2021), pp. 600-615
Software-defined far memory in warehouse-scale computers
Andres Lagar-Cavilla
Suleiman Souhlal
Neha Agarwal
Radoslaw Burny
Shakeel Butt
Junaid Shahid
Greg Thelen
Kamil Adam Yurtsever
Yu Zhao
International Conference on Architectural Support for Programming Languages and Operating Systems (2019)
A Hierarchical Neural Model of Data Prefetching
Zhan Shi
Akanksha Jain
Calvin Lin
Architectural Support for Programming Languages and Operating Systems (ASPLOS) (2021)
Searching for Fast Models on Datacenter Accelerators
Ruoming Pang
Andrew Li
Norm Jouppi
Conference on Computer Vision and Pattern Recognition (2021)
Thunderbolt: Throughput-Optimized, Quality-of-Service-Aware Power Capping at Scale
Shaohong Li
Sreekumar Kodakara
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), {USENIX} Association (2020), pp. 1241-1255