Jump to Content

Exponential suppression of bit or phase flip errors with repetitive quantum error correction

Rami Barends
Roberto Collins
Sean Harrington
Sergei Isakov
Thomas E O'Brien
Trent Huang
Trevor Mccourt
Vadim Smelyanskiy
Vladimir Shvarts
William Courtney
Wojtek Mruczkiewicz
Xiao Mi
Yu Chen
Alan Derk
Alan Ho
Alex Opremcak
Alexander Korotkov
Alexandre Bourassa
Andre Gregory Petukhov
Andrew Dunsworth
Anthony Megrant
Bálint Pató
Benjamin Chiaro
Brooks Riley Foxen
Charles Neill
Cody Jones
Daniel Eppens
Dave Landhuis
Doug Strain
Edward Farhi
Eric Ostby
Fedor Kostritsa
Frank Carlton Arute
Igor Aleiner
Jamie Yao
Jeremy Patterson Hilton
Jimmy Chen
Josh Mutus
Juan Atalaya
Kostyantyn Kechedzhi
Kunal Arya
Marco Szalay
Masoud Mohseni
Matt Trevithick
Michael Broughton
Michael Newman
Nicholas Bushnell
Nicholas Redd
Orion Martin
Pavel Laptev
Ping Yeh
Nature (2021)
Google Scholar


Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates below 10^-15, but state-of-the-art quantum platforms typically have physical error rates near 10^-3. Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits so that errors can be corrected. Logical errors are then exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold. QEC also requires that the errors are local, and that performance is maintained over many rounds of error correction, a major outstanding experimental challenge. Here, we implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors, reducing logical error per round by more than 100x when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analyzing error correlations with high precision, and characterize the locality of errors in a device performing QEC for the first time. Finally, we perform error detection using a small 2D surface code logical qubit on the same device, and show that the results from both 1D and 2D codes agree with numerical simulations using a simple depolarizing error model. These findings demonstrate that superconducting qubits are on a viable path towards fault tolerant quantum computing.

Research Areas