Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11082 publications
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    The Pseudo-Dimension of Contracts
    Paul Duetting
    Michal Feldman
    Tomasz Ponitka
    Ermis Soumalis
    EC '25: Proceedings of the 26th ACM Conference on Economics and Computation (2025), 514 - 539
    Preview abstract Algorithmic contract design studies scenarios where a principal incentivizes an agent to exert effort on her behalf. In this work, we focus on settings where the agent's type is drawn from an unknown distribution, and formalize an offline learning framework for learning near-optimal contracts from sample agent types. A central tool in our analysis is the notion of pseudo-dimension from statistical learning theory. Beyond its role in establishing upper bounds on the sample complexity, pseudo-dimension measures the intrinsic complexity of a class of contracts, offering a new perspective on the tradeoffs between simplicity and optimality in contract design. Our main results provide essentially optimal tradeoffs between pseudo-dimension and representation error (defined as the loss in principal's utility) with respect to linear and bounded contracts. Using these tradeoffs, we derive sample- and time-efficient learning algorithms, and demonstrate their near-optimality by providing almost matching lower bounds on the sample complexity. Conversely, for unbounded contracts, we prove an impossibility result showing that no learning algorithm exists. Finally, we extend our techniques in three important ways. First, we provide refined pseudo-dimension and sample complexity guarantees for the combinatorial actions model, revealing a novel connection between the number of critical values and sample complexity. Second, we extend our results to menus of contracts, showing that their pseudo-dimension scales linearly with the menu size. Third, we adapt our algorithms to the online learning setting, where we show that, a polynomial number of type samples suffice to learn near-optimal bounded contracts. Combined with prior work, this establishes a formal separation between expert advice and bandit feedback for this setting. View details
    Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
    Marc Stogaitis
    Tajinder Gadh
    Richard Allen
    Alexei Barski
    Robert Bosch
    Patrick Robertson
    Youngmin Cho
    Nivetha Thiruverahan
    Aman Raj
    Geophysical Journal International (2025), ggae436
    Preview abstract This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation. View details
    Smartwatch-Based Walking Metrics Estimation
    Amir Farjadian
    Anupam Pathak
    Alicia Kokoszka
    Jonathan Hsu
    Kyle DeHolton
    Lawrence Cai
    Shwetak Patel
    Mark Malhotra
    Jonathan Wang
    Shun Liao
    2025
    Preview abstract Gait parameters are important health indicators of neurological control, musculoskeletal health and fall risk, but traditional analysis requires specialized laboratory equipment. While smartphone inertial measurement units (IMUs) enable estimation of gait metrics, their real-world use may be limited by inconsistent placement and user burden. With a fixed on-wrist placement, smartwatches offer a stable, convenient and continuous monitoring potential, but wrist-based sensing presents inherent challenges due to the indirect coupling between arm swing and leg movement. This paper introduces a novel multi-head deep learning model leveraging IMU signals from a consumer smartwatch, along with user height information to estimate a comprehensive suite of spatio-temporal walking metrics, including step length , gait speed, swing time, stance time, and double support time. Results from 250 participants across two countries demonstrate that the model achieves high validity (Pearson r > 0.7) and reliability (ICC > 0.7) for most gait metrics, comparable or exceeding leading smartphone-based approaches. This work, the largest in-lab, smartwatch-based gait study to date, highlights the feasibility of gait monitoring using ubiquitous consumer smartwatches. View details
    Democratizing ML for Enterprise Security: A Self-Sustained Attack Detection Framework
    Ge Zhang
    Birkett Huber
    Sam Lipton
    Benoit Seguin
    Yanis Pavlidis
    Conference on Applied Machine Learning in Information Security (2025) (to appear)
    Preview abstract Despite advancements in machine learning for security, rule-based detection remains prevalent in Security Operations Centers due to the resource intensiveness and skill gap associated with ML solutions. While traditional rule-based methods offer efficiency, their rigidity leads to high false positives or negatives and requires continuous manual maintenance. This paper proposes a novel, two-stage hybrid framework to democratize ML-based threat detection. The first stage employs intentionally loose YARA rules for coarse-grained filtering, optimized for high recall. The second stage utilizes an ML classifier to filter out false positives from the first stage's output. To overcome data scarcity, the system leverages Simula, a seedless synthetic data generation framework, enabling security analysts to create high-quality training datasets without extensive data science expertise or pre-labeled examples. A continuous feedback loop incorporates real-time investigation results to adaptively tune the ML model, preventing rule degradation. This proposed model with active learning has been rigorously tested for a prolonged time in a production environment spanning tens of thousands of systems. The system handles initial raw log volumes often reaching 250 billion events per day, significantly reducing them through filtering and ML inference to a handful of daily tickets for human investigation. Live experiments over an extended timeline demonstrate a general improvement in the model's precision over time due to the active learning feature. This approach offers a self-sustained, low-overhead, and low-maintenance solution, allowing security professionals to guide model learning as expert ``teachers''. View details
    Zoom in, Zoom out, Reframe: Domain Experts’ Strategies for Addressing Non-Experts’ Complex Questions
    Beverly Freeman
    Roma Ruparel
    Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI) (2025)
    Preview abstract Consumers rely on the Internet for expert information in domains such as healthcare and law. Large Language Models (LLMs) have the potential to increase access to expert knowledge. However, past research has not addressed how to handle certain aspects of complex questions that commonly occur in expert-layperson interactions. We conducted in-depth interviews with 26 experts across multiple domains to understand how they experience and respond to challenges associated with non-experts’ questions. Results from a thematic analysis reveal three recurring strategies that experts across domains employ when fielding complex questions. Experts zoom in to clarify details of a broad information request, zoom out to address overly narrow questions or assumptions, and reframe when the underlying need is unstated or poorly represented. We discuss implications for the design of LLM-based experiences that facilitate access to expert information. View details
    Is Long Context All You Need? Leveraging LLM's Extended Context for NL2SQL
    Yeounoh Chung
    Brenton Milne
    Gaurav Tarlok Kakkar
    Yu Gan
    PVLDB (2025), pp. 2735-2747
    Preview abstract Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks. In particular, improvements in reasoning abilities and the expansion of context windows have opened new avenues for leveraging these powerful models. NL2SQL is challenging in that the natural language question is inherently ambiguous, while the SQL generation requires a precise understanding of complex data schema and semantics. One approach to this semantic ambiguous problem is to provide more and sufficient contextual information. In this work, we explore the performance and the latency trade-offs of the extended context window (a.k.a., long context) offered by Google's state-of-the-art LLM (\textit{gemini-1.5-pro}). We study the impact of various contextual information, including column example values, question and SQL query pairs, user-provided hints, SQL documentation, and schema. To the best of our knowledge, this is the first work to study how the extended context window and extra contextual information can help NL2SQL generation with respect to both accuracy and latency cost. We show that long context LLMs are robust and do not get lost in the extended contextual information. Additionally, our long-context NL2SQL pipeline based on Google's \textit{gemini-pro-1.5} achieve a strong performance with 67.41\% on BIRD benchmark (dev) without finetuning and expensive self-consistency based techniques. View details
    Binamix -- A Python Library for Generating Binaural Audio Datasets
    Dan Barry
    Davoud Shariat Panah
    Alessandro Ragano
    Andrew Hines
    AES 158th Audio Engineering Society Convention (2025)
    Preview abstract The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library’s capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/ View details
    ×