Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11082 publications
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields
    Jianxun Wang
    Pan Du
    Meet Hemant Parikh
    Xiantao Fan
    Xinyang Liu
    Yi-fan Chen
    Physics Review Fluids (2025)
    Preview abstract Eddy-resolving turbulence simulations require stochastic inflow conditions that accurately replicate the complex, multi-scale structures of turbulence. Traditional recycling-based methods rely on computationally expensive precursor simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence. Recent advances in deep learning (DL) have opened new possibilities for inflow turbulence generation, yet many DL-based methods rely on deterministic, autoregressive frameworks prone to error accumulation, resulting in poor robustness for long-term predictions. In this work, we present CoNFiLD-inlet, a novel DL-based inflow turbulence generator that integrates diffusion models with a conditional neural field (CNF)-encoded latent space to produce realistic, stochastic inflow turbulence. By parameterizing inflow conditions using Reynolds numbers, CoNFiLD-inlet generalizes effectively across a wide range of Reynolds numbers (Reτ between 103 and 104) without requiring retraining or parameter tuning. Comprehensive validation through a priori and a posteriori tests in Direct Numerical Simulation (DNS) and Wall-Modeled Large Eddy Simulation (WMLES) demonstrates its high fidelity, robustness, and scalability, positioning it as an efficient and versatile solution for inflow turbulence synthesis. View details
    Preview abstract Online scams are a growing threat in India, impacting millions and causing substantial financial losses year over year. This white paper presents ShieldUp!, a novel mobile game prototype designed to inoculate users against common online scams by leveraging the principles of psychological inoculation theory. ShieldUp! exposes users to weakened versions of manipulation tactics frequently used by scammers, and teaches them to recognize and pre-emptively refute these techniques. A randomized controlled trial (RCT) with 3,000 participants in India was conducted to evaluate the game's efficacy in helping users better identify scams scenarios. Participants were assigned to one of three groups: the ShieldUp! group (play time: 15 min), a general scam awareness group (watching videos and reading tips for 10-15 min), and a control group (plays "Chrome Dino", an unrelated game, for 10 minutes). Scam discernment ability was measured using a newly developed Scam Discernment Ability Test (SDAT-10) before the intervention, immediately after, and at a 21-day follow-up. Results indicated that participants who played ShieldUp! showed a significant improvement in their ability to identify scams compared to both control groups, and this improvement was maintained at follow-up. Importantly, while both interventions initially led users to to show increased skepticism towards even genuine online offers (NOT Scam scenarios), this effect dissipated after 21 days, suggesting no long-term negative impact on user trust. This study demonstrates the potential of game-based inoculation as a scalable and effective scam prevention strategy, offering valuable insights for product design, policy interventions, and future research, including the need for longitudinal studies and cross-cultural adaptations. View details
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Probing non-equilibrium topological order on a quantum processor
    Melissa Will
    Tyler Cochran
    Bernhard Jobst
    Michael Knap
    Adam Gammon-Smith
    Frank Pollmann
    Nature, 645 (2025), 348–353
    Preview abstract Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter. View details
    Post-hoc Unsupervised Concept-based Explanation for Language: A Comparison Through User-LLM
    Antonin Poché
    Alon Jacovi
    Agustin Martin Picard
    Victor Boutin
    Fanny Jourdan
    2025
    Preview abstract Concept-based explanations enhance interpretability by mapping complex model computations to human-understandable concepts. Evaluating their interpretability is complex, hinging not only on the quality of the concept space but also on how effectively these concepts are communicated to users. Existing evaluation metrics often focus solely on the concept space, neglecting the impact of communication and evaluating either faithfulness or plausibility. To address these challenges, we introduce a simulatability framework that assesses interpretability by measuring a user's ability to predict the model's outputs based solely on the provided explanations. This approach accounts for both the concept space and its communication, encompassing the full spectrum of interpretability. Recognizing the impracticality of extensive human studies, we propose using large language models (user-LLMs) as proxies for human users in simulatability experiments. This novel method allows for scalable and consistent evaluation across various models and datasets. Our comprehensive experiments demonstrate that user-LLMs effectively simulate human interpretability assessments, providing consistent rankings of explanation methods. Our work advances the scalable evaluation of interpretability in Explainable AI, promoting the development of AI systems that are both accurate and transparent. View details
    Unconditional Anonymous Quantum Tokens
    Dmytro Gavinsky
    Dar Gilboa
    Siddharth Jain
    Dmitri Maslov
    2025
    Preview abstract Protecting user privacy in financial transactions is desirable, yet in the classical world it is effectively impossible without hardware assumptions. Most existing quantum money schemes also fail to guarantee anonymity. We introduce a construction of single-use quantum tokens that give users the ability to detect whether the issuing authority is tracking them, for which we prove unconditional security. Our tokens do not require quantum communication from the users themselves, making them relatively practical to deploy. We discuss potential applications including one-time payment tokens, anonymous one-time pads and voting. View details
    Practical Inverse Rendering of Textured and Translucent Appearance
    Philippe Weier
    Jérémy Riviere
    Ruslan Guseinov
    Stephan Garbin
    Philipp Slusallek
    Bernd Bickel
    Thabo Beeler
    Delio Vicini
    ACM Transactions on Graphics (TOG), 44 (2025), pp. 1-16
    Preview abstract Inverse rendering has emerged as a standard tool to reconstruct the parameters of appearance models from images (e.g., textured BSDFs). In this work, we present several novel contributions motivated by the practical challenges of recovering high-resolution surface appearance textures, including spatially-varying subsurface scattering parameters. First, we propose Laplacian mipmapping, which combines differentiable mipmapping and a Laplacian pyramid representation into an effective preconditioner. This seemingly simple technique significantly improves the quality of recovered surface textures on a set of challenging inverse rendering problems. Our method automatically adapts to the render and texture resolutions, only incurs moderate computational cost and achieves better quality than prior work while using fewer hyperparameters. Second, we introduce a specialized gradient computation algorithm for textured, path-traced subsurface scattering, which facilitates faithful reconstruction of translucent materials. By using path tracing, we enable the recovery of complex appearance while avoiding the approximations of the previously used diffusion dipole methods. Third, we demonstrate the application of both these techniques to reconstructing the textured appearance of human faces from sparse captures. Our method recovers high-quality relightable appearance parameters that are compatible with current production renderers. View details
    ×