Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10128 publications
Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
Minghan Li
Jimmy Lin
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, crossencoder rankers remains under-explored. A recent study shows that current expansion techniques benefit weaker models but harm stronger rankers. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to different crossencoder rankers and verify the deteriorated zero-shot effectiveness. We identify two vital steps in the experiment: high-quality keyword generation and minimally-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by generating keywords through a reasoning chain and aggregating the ranking results of each expanded query via selfconsistency, reciprocal rank weighting, and fusion. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
View details
Unveiling Privacy Perspectives about Mobile Health Apps on a Large Scale
PETS workshop: Privacy, Safety and Trust for Mobile Health Apps (2024)
Preview abstract
In this paper we study users' opinions about the privacy of their mobile health apps. We look at what they write in app reviews in the 'Health & Fitness' category on the Google Play store. We identified 2832 apps in this category (based on 1K minimum installs). Using NLP/LLM analyses, we find that 76% of these apps have at least some privacy reviews. In total this yields over 164,000 reviews about privacy, from over 150 countries and in 25 languages. Our analyses identifies top themes and offers an approximation of how widespread these issues are around the world. We show that the top 4 themes - Data Sharing and Exposure, Permission Requests, Location Tracking and Data Collection - are issues of concern in over 70 countries. Our automatically generated thematic summaries reveal interesting aspects that deserve further research around user suspicions (unneeded data collection), user requests (more fine-grained control over data collection and data access), as well as user behavior (uninstalling apps).
View details
Learning from straggler clients in federated learning
Ehsan Amid
Rohan Anil
Arxiv (2024) (to appear)
Preview abstract
How well do existing federated learning algorithms learn from client devices that return model updates with a significant time delay? Is it even possible to learn effectively from clients that report back minutes, hours, or days after being scheduled? We answer these questions by developing Monte Carlo simulations of client latency that are guided by real-world applications. We compare well-known synchronous optimization algorithms like FedAvg and FedAdam with the state-of-the-art asynchronous FedBuff algorithm, and discover that these existing approaches often struggle to learn from severely delayed clients. To improve upon these, we experiment with modifications including distillation regularization and exponential moving averages of model weights. Finally, we invent two new algorithms, FARe-DUST and FeAST-on-MSG, based on distillation and averaging, respectively. Experiments with the EMNIST, CIFAR-100, and StackOverflow benchmark federated learning tasks demonstrate that our new algorithms outperform existing ones in terms of accuracy for straggler clients, while also providing better trade-offs between training time and total accuracy.
View details
V2Meow: Meowing to the Visual Beat via Video-to-Music Generation
Chris Donahue
Dima Kuzmin
Judith Li
Kun Su
Mauro Verzetti
Qingqing Huang
Yu Wang
Vol. 38 No. 5: AAAI-24 Technical Tracks 5, AAAI Press (2024), pp. 4952-4960
Preview abstract
Video-to-music generation demands both a temporally localized high-quality listening experience and globally aligned video-acoustic signatures. While recent music generation models excel at the former through advanced audio codecs, the exploration of video-acoustic signatures has been confined to specific visual scenarios. In contrast, our research confronts the challenge of learning globally aligned signatures between video and music directly from paired music and videos, without explicitly modeling domain-specific rhythmic or semantic relationships. We propose V2Meow, a video-to-music generation system capable of producing high-quality music audio for a diverse range of video input types using a multi-stage autoregressive model. Trained on 5k hours of music audio clips paired with video frames mined from in-the-wild music videos, V2Meow is competitive with previous domain-specific models when evaluated in a zero-shot manner. It synthesizes high-fidelity music audio waveforms solely by conditioning on pre-trained general purpose visual features extracted from video frames, with optional style control via text prompts. Through both qualitative and quantitative evaluations, we demonstrate that our model outperforms various existing music generation systems in terms of visual-audio correspondence and audio quality. Music samples are available at tinyurl.com/v2meow.
View details
API Governance at Scale
Mak Ahmad
JJ Geewax
David R Karger
Kwan-Liu Ma
ICSE 2024 Software Engineering in Practice (2024)
Preview abstract
API Governance, the process of applying standardized sets of policies and guardrails to the design and development of APIs, has only grown in importance and prominence given the continued growth in APIs being produced. In this paper, we present an Action Research style approach to investigate and understand the utility of a multi-faceted API Governance process being adopted inside Google. We first reflect on past research around API Governance, and then introduce three new components, 1. API Improvement Proposals (AIPs) the documented source of truth for API design rules, 2. API Linter, an automated analysis tool which checks for adherence to / violations of AIPs, and 3. API Readability, a program to educate and certify API design experts. These three components are designed to build upon pre-existing processes to scale and improve API design. Through a mixed-methods research strategy, containing both a survey and a series of interviews, we evaluate the utility of these approaches in supporting API Producers. Our research shows that API Producers have positive sentiment towards API Governance, validating the general direction of the program. Specifically, our study participants highlighted the positive impact of API Governance on the quality of the APIs they produced, via consistency in both the outcome and approach. This paper also discusses future research opportunities to enhance API Governance, specifically with regards to newer API Producers, who reported worse sentiment towards the program than their more experienced peers.
View details
Specifying BGP using TLA+
Aman Shaikh
(2024)
Preview abstract
This presentation is about the TLA+ specification we have written for BGP, the routing protocol underpinning the Internet. The specification also serves as a crucial first-step towards the use of TLA+ for verification of network designs.
View details
Websites Need Your Permission Too – User Sentiment and Decision Making on Web Permission Prompts in Desktop Chrome
Marian Harbach
CHI 2024, ACM
Preview abstract
The web utilizes permission prompts to moderate access to certain capabilities. We present the first investigation of user behavior and sentiment of this security and privacy measure on the web, using 28 days of telemetry data from more than 100M Chrome installations on desktop platforms and experience sampling responses from 25,706 Chrome users. Based on this data, we find that ignoring and dismissing permission prompts are most common for geolocation and notifications. Permission prompts are perceived as more annoying and interrupting when they are not allowed, and most respondents cite a rational reason for the decision they took. Our data also supports that the perceived availability of contextual information from the requesting website is associated with allowing access to a requested capability. More usable permission controls could facilitate adoption of best practices that address several of the identified challenges; and ultimately could lead to better user experiences and a safer web.
View details
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Yuan Su
Casper Gyurik
Robbie King
Joao Basso
Abhishek Rajput
Nathan Wiebe
Vedran Djunko
PRX Quantum, 5 (2024), pp. 010319
Preview abstract
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers in persistent homology (a way of characterizing topological features of data sets). Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples for which super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve some seemingly classically intractable instances.
View details
Assessing Web Fingerprinting Risk
Robert Busa-Fekete
Antonio Sartori
Proceedings of the ACM Web Conference (WWW 2024)
Preview abstract
Modern Web APIs allow developers to provide extensively customized experiences for website visitors, but the richness of the device information they provide also make them vulnerable to being abused by malign actors to construct browser fingerprints, device-specific identifiers that enable covert tracking of users even when cookies are disabled.
Previous research has established entropy, a measure of information, as the key metric for quantifying fingerprinting risk. Earlier studies that estimated the entropy of Web APIs were based on data from a single website or were limited to an extremely small sample of clients. They also analyzed each Web API separately and then summed their entropies to quantify overall fingerprinting risk, an approach that can lead to gross overestimates.
We provide the first study of browser fingerprinting which addresses the limitations of prior work. Our study is based on actual visited pages and Web API function calls reported by tens of millions of real Chrome browsers in-the-wild. We accounted for the dependencies and correlations among Web APIs, which is crucial for obtaining more realistic entropy estimates. We also developed a novel experimental design that accurately estimates entropy while never observing too much information from any single user. Our results provide an understanding of the distribution of entropy for different website categories, confirm the utility of entropy as a fingerprinting proxy, and offer a method for evaluating browser enhancements which are intended to mitigate fingerprinting.
View details
Preview abstract
As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses.
View details
Preview abstract
We're roughly 10 years into the OpenConfig journey. We have implementations in hand from various vendors, and we've gained significant operational experience in the domains of Streaming Telemetry and in Developing Configuration Systems to leverage the developed models. What have we learned? Are the abstractions we've generated the right ones? If not, why? Were we too influenced by the tools and inertia of the time when we made some critical decisions? How do we need to evolve going forward? This discussion is part retrospective/introspective, a candid look at where we've been and what we need to think about as we evolve the next generation of our management (and control) planes. What should we be thinking about as network engineers who write software?
View details
Towards Realistic Synthetic User-Generated Content: A Scaffolding Approach to Generating Online Discussions
Barbara Ikica
Hamidreza Alvari
Mehdi Hafezi Manshadi
(2024)
Preview abstract
The emergence of synthetic data represents a pivotal shift in modern machine learning, offering a solution to satisfy the need for large volumes of data in domains where real data is scarce, highly private, or difficult to obtain. We investigate the feasibility of creating realistic, large-scale synthetic datasets of user-generated content, noting that such content is increasingly prevalent and a source of frequently sought information. Large language models (LLMs) offer a starting point for generating synthetic social media discussion threads, due to their ability to produce diverse responses that typify online interactions. However, as we demonstrate, straightforward application of LLMs yields limited success in capturing the complex structure of online discussions, and standard prompting mechanisms lack sufficient control. We therefore propose a multi-step generation process, predicated on the idea of creating compact representations of discussion threads, referred to as scaffolds. Our framework is generic yet adaptable to the unique characteristics of specific social media platforms. We demonstrate its feasibility using data from two distinct online discussion platforms. To address the fundamental challenge of ensuring the representativeness and realism of synthetic data, we propose a portfolio of evaluation measures to compare various instantiations of our framework.
View details
Preview abstract
Detecting offensive content in text is an increasingly central challenge for both social-media platforms and AI-driven technologies. However offensiveness remains a subjective phenomenon as perspectives differ across sociodemographic characteristics, as well as cultural norms and moral values. This intricacy is largely ignored in the current AI-focused approaches for detecting offensiveness or related concepts such as hate speech and toxicity detection. We frame the task of determining offensiveness as essentially a matter of moral judgment --- deciding the boundaries of ethically wrong vs. right language to be used or generated within an implied set of sociocultural norms. In this paper, we investigate how judgment of offensiveness varies across diverse global cultural regions, and the crucial role of moral values in shaping these variations. Our findings highlight substantial cross-cultural differences in perceiving offensiveness, with moral concerns about Caring and Purity as the mediating factor driving these differences. These insights are of importance as AI safety protocols, shaped by human annotators' inputs and perspectives, embed their moral values which do not align with the notions of right and wrong in all contexts, and for all individuals.
View details
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Jeff Parker
Volodymyr Kuleshov
International Conference on Machine Learning (ICML) (2024)
Preview abstract
Learning dynamics from dissipative chaotic systems is notoriously difficult due to their inherent instability, as formalized by their positive Lyapunov exponents, which exponentially amplify errors in the learned dynamics. However, many of these systems exhibit ergodicity and an attractor: a compact and highly complex manifold, to which trajectories converge in finite-time, that supports an invariant measure, i.e., a probability distribution that is invariant under the action of the dynamics, which dictates the long-term statistical behavior of the system. In this work, we leverage this structure to propose a new framework that targets learning the invariant measure as well as the dynamics, in contrast with typical methods that only target the misfit between trajectories, which often leads to divergence as the trajectories’ length increases. We use our framework to propose a tractable and sample efficient objective that can be used with any existing learning objectives. Our Dynamics Stable Learning by Invariant Measure (DySLIM) objective enables model training that achieves better point-wise tracking and long-term statistical accuracy relative to other learning objectives. By targeting the distribution with a scalable regularization term, we hope that this approach can be extended to more complex systems exhibiting slowly-variant distributions, such as weather and climate models. Code to reproduce our experiments is available here: https://github.com/google-research/swirl-dynamics/tree/main/swirl_dynamics/projects/ergodic.
View details