Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10501 publications
    Preview abstract The proliferation of IoT in cities, combined with Digital Twins, creates a rich data foundation for Smart Cities aimed at improving urban life and operations. Generative AI (GenAI) significantly enhances this potential, moving beyond traditional AI analytics by processing multimodal content and generating novel outputs like text and simulations. Using specialized or foundational models, GenAI's natural language abilities such as Natural Language Understanding (NLU) and Generation (NLG) can power tailored applications and unified interfaces, dramatically lowering barriers for users interacting with complex smart city systems. In this paper, we focus on GenAI applications based on conversational interfaces within the context of three critical user archetypes in a Smart City - Citizens, Operators and Planners. We identify and review GenAI models and techniques that have been proposed or deployed for various urban subsystems in the contexts of these user archetypes. We also consider how GenAI can be built on the existing data foundation of official city records, IoT data streams and Urban Digital Twins. We believe this work represents the first comprehensive summarization of GenAI techniques for Smart Cities from the lens of the critical users in a Smart City. View details
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Passive Heart Rate Monitoring During Smartphone Use in Everyday Life
    Shun Liao
    Paolo Di Achille
    Jiang Wu
    Silviu Borac
    Jonathan Wang
    Eric Teasley
    Lawrence Cai
    Daniel McDuff
    Hao-Wei Su
    Brent Winslow
    Anupam Pathak
    Shwetak Patel
    Jim Taylor
    Jamie Rogers
    (2025)
    Preview abstract Resting heart rate (RHR) is an important biomarker of cardiovascular health and mortality, but tracking it longitudinally generally requires a wearable device, limiting its availability. We present PHRM, a deep learning system for passive heart rate (HR) and RHR measurements during ordinary smartphone use, using facial video-based photoplethysmography. Our system was developed using 225,773 videos from 495 participants and validated on 185,970 videos from 205 participants in laboratory and free-living conditions – the largest validation study of its kind. Compared to reference electrocardiogram, PHRM achieved a mean absolute percentage error (MAPE) <10% for HR measurements across three skin tone groups of light, medium and dark pigmentation; MAPE for each skin tone group was non-inferior versus the others. Daily RHR measured by PHRM had a mean absolute error <5 bpm compared to a wearable HR tracker, and was associated with known risk factors. These results highlight the potential of smartphones to enable passive and equitable heart health monitoring. View details
    Bridging Sign and Spoken Languages: Pseudo GlossGeneration for Sign Language Translation
    Trevor Cohn
    Jianyuan Guo
    Advances in Neural Information Processing Systems (NeurIPS) (2025)
    Preview abstract Sign Language Translation (SLT) aims to map sign language videos to spoken language text. A common approach leverages gloss annotations as an intermediate representation, decomposing SLT into two sub-tasks: video-to-gloss recognition and gloss-to-text translation. While effective, this paradigm relies on expert-annotated gloss labels, which are costly and increasingly unavailable in many datasets, limiting scalability. To address this challenge, we propose a gloss-free pseudo gloss generation framework that eliminates the need for human-annotated glosses while preserving the structured intermediate representation. Specifically, we prompt a Large Language Model (LLM) with example text-gloss pairs to extract potential sign-related gloss words from the text by leveraging its in-context learning capability. To mitigate the inherent misalignment between generated pseudo glosses and sign sequences in the video, we further refine their order by formulating the alignment as a weakly supervised learning problem. With the reordered pseudo-glosses, additional alignment losses such as CTC can be incorporated to enhance supervision. We train our SLT model—comprising a vision encoder and a translator—under a three-stage pipeline, effectively bridging the gap between sign and spoken language. Despite its simplicity, our approach outperforms previous state-of-the-art gloss-free frameworks across three SLT benchmarks and achieves competitive results with gloss-based methods. View details
    Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
    Vincent Rudolf Meijer
    Rémi Chevallier
    Allie Duncan
    Kyle McConnaughay
    Atmospheric Measurement Techniques, 18 (2025), pp. 3495-3532
    Preview abstract Condensation trail (contrail) cirrus clouds cause a substantial fraction of aviation's climate impact. One proposed method for the mitigation of this impact involves modifying flight paths to avoid particular regions of the atmosphere that are conducive to the formation of persistent contrails, which can transform into contrail cirrus. Determining the success of such avoidance maneuvers can be achieved by ascertaining which flight formed each nearby contrail observed in satellite imagery. The same process can be used to assess the skill of contrail forecast models. The problem of contrail-to-flight attribution is complicated by several factors, such as the time required for a contrail to become visible in satellite imagery, high air traffic densities, and errors in wind data. Recent work has introduced automated algorithms for solving the attribution problem, but it lacks an evaluation against ground-truth data. In this work, we present a method for producing synthetic contrail detections with predetermined contrail-to-flight attributions that can be used to evaluate – or “benchmark” – and improve such attribution algorithms. The resulting performance metrics can be employed to understand the implications of using these observational data in downstream tasks, such as forecast model evaluation and the analysis of contrail avoidance trials, although the metrics do not directly quantify real-world performance. We also introduce a novel, highly scalable contrail-to-flight attribution algorithm that leverages the characteristic compounding of error induced by simulating contrail advection using numerical weather models. The benchmark shows an improvement of approximately 25 % in precision versus previous contrail-to-flight attribution algorithms, without compromising recall. View details
    Preview abstract We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient. View details
    Wave: Offloading Resource Management to SmartNIC Cores
    Jack Humphries
    Neel Natu
    Kostis Kaffes
    Hank Levy
    Christos Kozyrakis
    2025
    Preview abstract SmartNICs are increasingly deployed in datacenters to offload tasks from server CPUs, improving the efficiency and flexibility of datacenter security, networking and storage. Optimizing cloud server efficiency in this way is critically important to ensure that virtually all server resources are available to paying customers. Userspace system software, specifically, decision-making tasks performed by various operating system subsystems, is particularly well suited for execution on mid-tier SmartNIC ARM cores. To this end, we introduce Wave, a framework for offloading userspace system software to processes/agents running on the SmartNIC. Wave uses Linux userspace systems to better align system functionality with SmartNIC capabilities. It also introduces a new host-SmartNIC communication API that enables offloading of even μs-scale system software. To evaluate Wave, we offloaded preexisting userspace system software including kernel thread scheduling, memory management, and an RPC stack to SmartNIC ARM cores, which showed a performance degradation of 1.1%-7.4% in an apples-to-apples comparison with on-host implementations. Wave recovered host resources consumed by on-host system software for memory management (saving 16 host cores), RPCs (saving 8 host cores), and virtual machines (an 11.2% performance improvement). Wave highlights the potential for rethinking system software placement in modern datacenters, unlocking new opportunities for efficiency and scalability. View details
    XR Blocks: Accelerating Human-Centered AI+XR Innovation
    Nels Numan
    Evgenii Alekseev
    Alex Cooper
    Min Xia
    Scott Chung
    Jeremy Nelson
    Xiuxiu Yuan
    Jolica Dias
    Tim Bettridge
    Benjamin Hersh
    Michelle Huynh
    Ricardo Cabello
    arXiv, Google XR (2025)
    Preview abstract We are on the cusp where Artificial Intelligence (AI) and Extended Reality (XR) are converging to unlock new paradigms of interactive computing. However, a significant gap exists between the ecosystems of these two fields: while AI research and development is accelerated by mature frameworks like PyTorch and benchmarks like LMArena, prototyping novel AI-driven XR interactions remains a high-friction process, often requiring practitioners to manually integrate disparate, low-level systems for perception, rendering, and interaction. To bridge this gap, we present XR Blocks, a cross-platform framework designed to accelerate human-centered AI+XR innovation. XR Blocks provides a modular architecture with plug-and-play components for core abstraction in AI+XR: user, world, peers; interface, context, and agents. Crucially, it is designed with the mission of "minimum code from idea to reality", accelerating rapid prototyping of complex AI+XR apps. Built upon accessible technologies (WebXR, three.js, TensorFlow, Gemini), our toolkit lowers the barrier to entry for XR creators. We demonstrate its utility through a set of open-source templates, samples, and advanced demos, empowering the community to quickly move from concept to interactive prototype. Site: https://xrblocks.github.io View details
    Preview abstract Estimating Origin-Destination (OD) travel demand is vital for effective urban planning and traffic management. Developing universally applicable OD estimation methodologies is significantly challenged by the pervasive scarcity of high-fidelity traffic data and the difficulty in obtaining city-specific prior OD estimates (or seed ODs), which are often prerequisite for traditional approaches. Our proposed method directly estimates OD travel demand by systematically leveraging aggregated, anonymized statistics from Google Maps Traffic Trends, obviating the need for conventional census or city-provided OD data. The OD demand is estimated by formulating a single-level, one-dimensional, continuous nonlinear optimization problem with nonlinear equality and bound constraints to replicate highway path travel times. The method achieves efficiency and scalability by employing a differentiable analytical macroscopic network model. This model by design is computationally lightweight, distinguished by its parsimonious parameterization that requires minimal calibration effort and its capacity for instantaneous evaluation. These attributes ensure the method's broad applicability and practical utility across diverse cities globally. Using segment sensor counts from Los Angeles and San Diego highway networks, we validate our proposed approach, demonstrating a two-thirds to three-quarters improvement in the fit to segment count data over a baseline. Beyond validation, we establish the method's scalability and robust performance in replicating path travel times across diverse highway networks, including Seattle, Orlando, Denver, Philadelphia, and Boston. In these expanded evaluations, our method not only aligns with simulation-based benchmarks but also achieves an average 13% improvement in it's ability to fit travel time data compared to the baseline during afternoon peak hours. View details
    Dynamical-generative downscaling of climate model ensembles
    Tapio Schneider
    John Anderson
    Proceedings of the National Academy of Sciences, 122 (2025), e2420288122
    Preview abstract Regional high-resolution climate projections are crucial for many applications, such as agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling, the state-of-the-art method to produce localized future climate information, involves running a regional climate model (RCM) driven by an Earth System Model (ESM), but it is too computationally expensive to apply to large climate projection ensembles. We propose an approach combining dynamical downscaling with generative AI to reduce the cost and improve the uncertainty estimates of downscaled climate projections. In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale. This approach leverages the generalizability of physics-based models and the sampling efficiency of diffusion models, enabling the downscaling of large multimodel ensembles. We evaluate our method against dynamically downscaled climate projections from the Coupled Model Intercomparison Project 6 (CMIP6) ensemble. Our results demonstrate its ability to provide more accurate uncertainty bounds on future regional climate than alternatives such as dynamical downscaling of smaller ensembles, or traditional empirical statistical downscaling methods. We also show that dynamical-generative downscaling results in significantly lower errors than popular statistical downscaling techniques, and captures more accurately the spectra, tail dependence, and multivariate correlations of meteorological fields. These characteristics make the dynamical-generative framework a flexible, accurate, and efficient way to downscale large ensembles of climate projections, currently out of reach for pure dynamical downscaling. View details
    Day-of-the-week Awareness in Time of Day Breakpoints for Traffic Light Plans
    Ori Rottenstreich
    Eliav Buchnik
    Shai Ferster
    Tom Kalvari
    Ron Tsibulsky
    Danny Veikherman
    Jack Haddad
    2025
    Preview abstract Time-of-day breakpoints (TODs) refer to the times over the day in which the plan of a traffic light is changed. Traditionally, TODs are selected jointly for all weekdays (Monday-Friday), typically with additional TODs dedicated to weekends. In this paper, we present an alternative approach motivated by traffic characteristics that can differ among the weekdays Monday-Friday and consider TODs which are day-of-the-week aware. The traffic-aware approach studies similarities among days and computes TODs that can be shared among days with similar characteristics but can also have other forms for weekdays with unique characteristics. Based on traffic properties derived from anonymized trajectories, we apply the new methodology to compute time-of-day breakpoints that are day-of-the-week aware in the city of Rio de Janeiro, Brazil and estimate the impact of the new methodology. View details
    Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
    Tyler Cochran
    Bernhard Jobst
    Yuri Lensky
    Gaurav Gyawali
    Norhan Eassa
    Melissa Will
    Aaron Szasz
    Dmitry Abanin
    Rajeev Acharya
    Laleh Beni
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Brian Ballard
    Alexandre Bourassa
    Michael Broughton
    David Browne
    Brett Buchea
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Anthony Cabrera
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Jahan Claes
    Agnetta Cleland
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Sayan Das
    Laura De Lorenzo
    Agustin Di Paolo
    Paul Donohoe
    ILYA Drozdov
    Andrew Dunsworth
    Alec Eickbusch
    Aviv Elbag
    Mahmoud Elzouka
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Suhas Ganjam
    Robert Gasca
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Dietrich Graumann
    Alex Greene
    Steve Habegger
    Monica Hansen
    Sean Harrington
    Paula Heu
    Oscar Higgott
    Jeremy Hilton
    Robert Huang
    Ashley Huff
    Bill Huggins
    Cody Jones
    Chaitali Joshi
    Pavol Juhas
    Hui Kang
    Amir Karamlou
    Kostyantyn Kechedzhi
    Trupti Khaire
    Bryce Kobrin
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Vlad Kurilovich
    Dave Landhuis
    Tiano Lange-Dei
    Brandon Langley
    Kim Ming Lau
    Justin Ledford
    Kenny Lee
    Loick Le Guevel
    Wing Li
    Alexander Lill
    Will Livingston
    Daniel Lundahl
    Aaron Lunt
    Sid Madhuk
    Ashley Maloney
    Salvatore Mandra
    Leigh Martin
    Orion Martin
    Cameron Maxfield
    Seneca Meeks
    Anthony Megrant
    Reza Molavi
    Sebastian Molina
    Shirin Montazeri
    Ramis Movassagh
    Charles Neill
    Michael Newman
    Murray Ich Nguyen
    Chia Ni
    Kris Ottosson
    Alex Pizzuto
    Rebecca Potter
    Orion Pritchard
    Ganesh Ramachandran
    Matt Reagor
    David Rhodes
    Gabrielle Roberts
    Kannan Sankaragomathi
    Henry Schurkus
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Spencer Small
    Clarke Smith
    Sofia Springer
    George Sterling
    Jordan Suchard
    Alex Sztein
    Doug Thor
    Mert Torunbalci
    Abeer Vaishnav
    Justin Vargas
    Sergey Vdovichev
    Guifre Vidal
    Steven Waltman
    Shannon Wang
    Brayden Ware
    Kristi Wong
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Bicheng Ying
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Yu Chen
    Vadim Smelyanskiy
    Adam Gammon-Smith
    Frank Pollmann
    Michael Knap
    Nature, 642 (2025), 315–320
    Preview abstract Lattice gauge theories (LGTs) can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits. Here we investigate the dynamics of local excitations in a LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics. View details
    Preview abstract Virtual Reality headsets isolate users from the real-world by restricting their perception to the virtual-world. Video See-Through (VST) headsets address this by utilizing world-facing cameras to create Augmented Reality experiences. However, directly displaying camera feeds can cause visual discomfort and cybersickness due to the inaccurate perception of scale and exaggerated motion parallax. This paper presents initial findings on the potential of geometry aware passthrough systems to mitigate cybersickness through enhanced depth perception. We introduce a promising protocol for quantitatively measuring cybersickness experienced by users in VST headsets. Using this protocol, we conduct a user study to compare direct passthrough and geometry aware passthrough systems. To the best of our knowledge, our study is the first one to reveal reduced nausea, disorientation, and total scores of cybersickness with geometry aware passthrough. It also uncovers several potential avenues to further mitigate visually-induced discomfort. View details
    HueManity: Probing Fine-Grained Visual Perception in MLLMs
    Rynaa Grover
    Jayant Tamarapalli
    Sahiti Yerramilli
    Nilay Pande
    (2025)
    Preview abstract Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric "easy" task and a striking 3% on the alphanumeric "hard" task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We will open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs. View details
    Preview abstract Datacenter network hotspots, defined as links with persistently high utilization, can lead to performance bottlenecks.In this work, we study hotspots in Google’s datacenter networks. We find that these hotspots occur most frequently at ToR switches and can persist for hours. They are caused mainly by bandwidth demand-supply imbalance, largely due to high demand from network-intensive services, or demand exceeding available bandwidth when compute/storage upgrades outpace ToR bandwidth upgrades. Compounding this issue is bandwidth-independent task/data placement by data-center compute and storage schedulers. We quantify the performance impact of hotspots, and find that they can degrade the end-to-end latency of some distributed applications by over 2× relative to low utilization levels. Finally, we describe simple improvements we deployed. In our cluster scheduler, adding hotspot-aware task placement reduced the number of hot ToRs by 90%; in our distributed file system, adding hotspot-aware data placement reduced p95 network latency by more than 50%. While congestion control, load balancing, and traffic engineering can efficiently utilize paths for a fixed placement, we find hotspot-aware placement – placing tasks and data under ToRs with higher available bandwidth – is crucial for achieving consistently good performance. View details