Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10270 publications
Preview abstract
Despite the advent of legislation such as the General Data Protection Regulation (GDPR) with its associated "Right to be Forgotten" (RTBF), few, if any, studies have measured user reactions to realistic edge cases with public-interest content. Surveying both users covered by and excluded from RTBF, this vignette-based survey experiment sought to better understand how users think of delisting content from search engine results and what factors influence user perceptions. While leaving information accessible in search engine results generally leads to warmer feelings towards those search engines than delisting it, we find that users do prefer different outcomes
depending on contextual elements specific to given cases. We also find that whether a country has active RTBF legislation does seem to be associated with both knowledge and attitudes about RTBF, but is unlikely to explain all of it. These results indicate a complex context around removing public-interest content from search engines’ results; it is essential that experts sensitive to local context perform the review in order to ensure that removal requests are handled in a way that meets users’ expectations.
View details
Preview abstract
Storage on Android has evolved significantly over the years, with each new Android version introducing changes aimed at enhancing usability, security, and privacy. While these updates typically help with restricting app access to storage through various mechanisms, they may occasionally introduce new complexities and vulnerabilities. A prime example is the introduction of scoped storage in Android 10, which fundamentally changed how apps interact with files. While intended to enhance user privacy by limiting broad access to shared storage, scoped storage has also presented developers with new challenges and potential vulnerabilities to address. However, despite its significance for user privacy and app functionality, no systematic studies have been performed to study Android’s scoped storage at depth from a security perspective. In this paper, we present the first systematic security analysis of the scoped storage mechanism. To this end, we design and implement a testing tool, named ScopeVerif, that relies on differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif takes a list of security properties and checks if there are any file operations that violate any security properties defined in the official Android documentation. Additionally, we conduct a comprehensive analysis across different Android versions as well as a cross-OEM analysis to identify discrepancies in different implementations and their security implications. Our study identifies both known and unknown issues of scoped storage. Our cross-version analysis highlights undocumented changes as well as partially fixed security loopholes across versions. Additionally, we discovered several vulnerabilities in scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and correct behavior, which potentially poses security risks. The affected OEMs and Google have acknowledged our findings and offered us bug bounties in response.
View details
AI as a Catalyst for Educational Equity: Addressing Global Teacher Shortages and Learning Disparities
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCERT) (2025)
Preview abstract
The global education system is grappling with a critical shortage of teachers, threatening the achievement of universal quality education. This article examines how artificial intelligence (AI) technologies can revolutionize educational access and equity by addressing these systemic challenges. Through a comprehensive article analysis of AI-enabled solutions, including personalized learning mechanisms, virtual tutoring systems, and intelligent content distribution platforms, the article explores the transformative potential of these technologies in democratizing education. The article investigates the implementation of AI across established educational platforms, examining their effectiveness in providing adaptive learning experiences, breaking down language barriers, and ensuring cultural relevance. The article demonstrates that strategic AI integration can significantly impact learning outcomes while helping to bridge the global teacher shortage gap. The article also addresses critical implementation challenges, providing policy recommendations and resource allocation frameworks for successful AI adoption in education systems worldwide. This article analysis contributes to the growing body of knowledge on educational technology by offering practical insights into how AI can be leveraged to create more inclusive, effective, and accessible learning environments, ultimately advancing the goal of quality education for all.
View details
SSDTrain: Faster Large Language Model Training Using SSD-Based Activation Offloading
Mert Hidayetoğlu
Steven Lumetta
Kun Wu
Sitao Huang
Jeongmin Brian Park
Wen-mei Hwu
Vikram Sharma Mailthody
Design Automation Conference (DAC) (2025)
Preview abstract
The scaling up of Large Language Models (LLMs) demands more memory than current GPUs can provide, hindering the training process. To address this challenge, we propose SSDTrain to efficiently offload activations, the intermediate tensors produced during LLM training, to SSDs. This approach reduces GPU memory usage without impacting performance by adaptively overlapping data transfers with computation. SSDTrain is compatible with popular deep learning frameworks like PyTorch, Megatron, and DeepSpeed, and it employs techniques such as tensor deduplication, forwarding, and adaptive offloading to further enhance efficiency. We conduct extensive experiments on Llama, BERT, and T5. Results demonstrate that SSDTrain effectively reduces 45% of the activation peak memory usage. It can perfectly overlap the IO with the computation without introducing performance penalty. SSDTrain can achieve a performance boost of up to 31% compared to the conventional training strategy using the same GPU systems.
View details
Permission Rationales in the Web Ecosystem: An Exploration of Rationale Text and Design Patterns
Yusra Elbitar
Sven Bugiel
Gianluca De Stefano
Soheil Khodayari
Giancarlo Pellegrino
Marian Harbach
Balazs Engedy
2025
Preview abstract
Modern web applications use features like camera and geolocation for personalized experiences, requiring user permission via browser prompts. To explain these requests, applications provide rationales—contextual information on why permissions are needed. Despite their importance, little is known about how often rationales appear on the web or their influence on user decisions.
This paper presents the first large-scale study of how the web ecosystem handles permission rationales, covering three areas: (i) identifying webpages that use permissions, (ii) detecting and classifying permission rationales, and (iii) analyzing their attributes to understand their impact on user decisions. We examined over 770K webpages from Chrome telemetry, finding 3.6K unique rationale texts and 749 rationale UIs across 85K pages. We extracted key rationale attributes and assessed their effect on user behavior by cross-referencing them with Chrome telemetry data. Our findings reveal nine key insights, providing the first evidence of how different rationales affect user decisions.
View details
Preview abstract
We consider the Coalition Structure Learning (CSL) problem in multi-agent systems, motivated by the existence of coalitions in many real-world systems, e.g., trading platforms and auction systems. In this problem, there is a hidden coalition structure within a set of $n$ agents, which affects the behavior of the agents in games. Our goal is to actively design a sequence of games
for the agents to play, such that observations in these games can be used to learn the hidden coalition structure. In particular, we consider the setting where in each round, we design and present a game together with a strategy profile to the agents, and receive a multiple-bit observation -- for each agent, we observe whether or not they would like to deviate from the specified strategy in this given game. Our contributions are three-fold: First, we show that we can learn the coalition structure in $O(\log n)$ rounds if we are allowed to choose any normal-form game in each round, matching the information-theoretical lower bound, and the result can be extended to congestion games. Second, in a more restricted setting where we can only choose a graphical game with degree limit $d$, we develop an algorithm to learn the coalition structure in $O(n/d+\log d)$ rounds. Third, when we can only learn the coalition structure through running second-price auctions with personalized reserve prices, we show that the coalition structure can be learned in $O(c\log n)$ rounds, where $c$ is the size of the largest coalition.
View details
H2E: Hand, Head, Eye: A Multimodal Cascade of Natural Inputs
Ken Pfeuffer
Hans Gellersen
Khushman Patel
IEEE VR (2025)
Preview abstract
Eye-based interaction techniques for extended reality, such as gaze and pinch, are simple to use however suffer from input precision issues. We present H2E, a fine and coarse-grained pointing technique that cascades Hand, Head, and Eye inputs. As users initiate a pinch gesture, a cursor appears at the gaze point that can be dragged by head pointing before pinch confirmation. This has the potential advantage that it can add a precision component without changing the semantics of the technique. In this paper, we describe the design and implementation of the technique. Furthermore, we present an evaluation of our method in a Fitts-based user study, exploring the speed-accuracy trade-offs against a gaze and pinch interaction baseline.
View details
Society-Centric Product Innovation in the Era of Customer Obsession
International Journal of Science and Research Archive (IJSRA), Volume 14 - Issue 1 (2025)
Preview abstract
This article provides a comprehensive analysis of the evolving landscape of innovation in the technology sector, with a focus on the intersection of technological progress and social responsibility. The article explores key challenges facing the industry, including public trust erosion, digital privacy concerns, and the impact of automation on workforce dynamics. It investigates responsible innovation frameworks' emergence and implementation across various organizations, highlighting the transformation from traditional development approaches to more society-centric models. The article demonstrates how companies balance innovation speed with social responsibility, incorporate ethical considerations into their development processes, and address digital disparities across different demographics. By examining how companies balance the pace of innovation with ethical responsibilities, integrate social considerations into their processes, and address digital inequities across diverse demographics, the article underscores the transformative potential of these frameworks. Through insights into cross-functional teams, impact assessment tools, and stakeholder engagement strategies, it demonstrates how responsible innovation drives both sustainable business value and societal progress.
View details
Preview abstract
The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally
productive.
The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter.
As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case.
View details
Context is Key for Agent Security
Eugene Bagdasaryan
Lillian Tsai
arXiv (2025)
Preview abstract
Judging the safety of an action, whether taken by a human or a system, must take into account the context in which the action takes place. For example, deleting an email from a user's mailbox may or may not be appropriate depending on the email's content, the user's goals, or even available space. Systems today that make these judgements---providing security against harmful or inappropriate actions---rely on manually-crafted policies or user confirmation for each relevant context. With the upcoming deployment of systems like generalist agents, we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual security for agents (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
View details
Governance, Risk and Compliance (GRC) Engineering: Data, AI, Automation, and the Future of Compliance to Audits
Eric Zhang
Ruchi Khurana
Vikram Khare
2025
Preview abstract
In today's rapidly evolving business landscape, Governance, Risk, and Compliance (GRC) leaders in large, complex organizations face unprecedented challenges. The cloud has revolutionized how businesses operate, offering unprecedented scalability, flexibility, cost-efficiency, additional security and resilience. However, this transformation also presents new challenges for GRC professionals. In a cloud-native world, where applications are built and deployed in dynamic, distributed environments, traditional GRC on-prem approaches, manual processes and spreadsheets struggle to keep pace. The key to success lies in embracing a data-driven GRC strategy that leverages the power of the cloud to enhance agility, visibility, and resilience.
View details
Preview abstract
https://www.overleaf.com/project/65ba7d45dae2bce751dba252
Hashing is a fundamental operation in various computer sci-
ence applications. Despite the prevalence of specific key
formats like social security numbers, MAC addresses, plate
numbers, and URLs, hashing libraries typically treat them as
general byte sequences. This paper introduces a technique
for synthesizing specialized hash functions tailored to par-
ticular byte formats. The proposed code generation method
leverages three prevalent patterns: (i) fixed-length keys, (ii)
keys with common subsequences, and (iii) keys ranging on
predetermined sequences of bytes. The code generation pro-
cess involves two algorithms: one identifies relevant regular
expressions within key examples, and the other generates
specialized hash functions based on these expressions. This
approach, straightforward to implement, showcases improve-
ments over highly optimized hash function implementations.
Comparative analysis demonstrates that our synthetic func-
tions outperform counterparts in the C++ Standard Template
Library and the Google Abseil Library, achieving speedups
ranging from 2% to 11%, depending on the key format.
View details
Preview abstract
We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods.
Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City.
View details
Preview abstract
We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.
View details
Differentiable Approximations for Distance Queries
David M. Mount
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
Preview abstract
The widespread use of gradient-based optimization has motivated the adaptation of various classical algorithms into differentiable solvers compatible with learning pipelines. In this paper, we investigate the enhancement of traditional geometric query problems such that the result consists of both the geometric function as well as its gradient. Specifically, we study the fundamental problem of distance queries against a set of points P in R^d, which also underlies various similarity measures for learning algorithms.
The main result of this paper is a multiplicative (1+epsilon)-approximation of the Euclidean distance to P which is differentiable at all points in R^d \ P with asymptotically optimal bounds on the norms of its gradient and Hessian, from a data structure with storage and query time matching state-of-the-art results for approximate nearest-neighbor searching. The approximation is realized as a regularized distance through a partition-of-unity framework, which efficiently blends multiple local approximations, over a suitably defined covering of space, into a smooth global approximation. In order to obtain the local distance approximations in a manner that facilitates blending, we develop a new approximate Voronoi diagram based on a simple point-location data structure, simplifying away both the lifting transformation and ray shooting.
View details