Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10129 publications
WSDM 2024 Workshop on Large Language Models for Individuals, Groups, and Society
Qiaozhu Mei
Vanessa Murdock
Jie Tang
Hongning Wang
Hamed Zamani
(2024) (to appear)
Preview abstract
This workshop discusses the cutting-edge developments in research and applications of personalizing large language models (LLMs) and adapting them to the demands of diverse user populations and societal needs. The full-day workshop plan includes several keynotes and invited talks, a poster session and a panel discussion.
View details
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
Babak Behsaz
Zachary Ryan Mccaw
Davin Hill
Robert Luben
Dongbing Lai
John Bates
Howard Yang
Tae-Hwi Schwantes-An
Yuchen Zhou
Anthony Khawaja
Andrew Carroll
Brian Hobbs
Michael Cho
Nature Genetics (2024)
Preview abstract
Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide association studies (GWAS). REGLE can uncover features not captured by existing expert-defined features and enables the creation of accurate disease-specific polygenic risk scores (PRSs) in datasets with very few labeled data. We apply REGLE to perform GWAS on respiratory and circulatory HDCD—spirograms measuring lung function and photoplethysmograms measuring blood volume changes. REGLE replicates known loci while identifying others not previously detected. REGLE are predictive of overall survival, and PRSs constructed from REGLE loci improve disease prediction across multiple biobanks. Overall, REGLE contain clinically relevant information beyond that captured by existing expert-defined features, leading to improved genetic discovery and disease prediction.
View details
Preview abstract
AI-powered software development tooling is changing the way that developers interact with tools and write code. However, the ability for AI to truly transform software development depends on developers' level of trust in the tools. In this work, we take a mixed methods approach to measuring the factors that influence developers' trust in AI-powered code completion. We identified that familiarity with AI suggestions, quality of the suggestion, and level of expertise with the language all increased acceptance rate of AI-powered suggestions. While suggestion length and presence in a test file decreased acceptance rates. Based on these findings we propose recommendations for the design of AI-powered development tools to improve trust.
View details
Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
Minghan Li
Jimmy Lin
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, crossencoder rankers remains under-explored. A recent study shows that current expansion techniques benefit weaker models but harm stronger rankers. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to different crossencoder rankers and verify the deteriorated zero-shot effectiveness. We identify two vital steps in the experiment: high-quality keyword generation and minimally-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by generating keywords through a reasoning chain and aggregating the ranking results of each expanded query via selfconsistency, reciprocal rank weighting, and fusion. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
View details
Preview abstract
This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques.
View details
A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
Shengyao Zhuang
Bevan Koopman
Guido Zuccon
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach. Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise. Through the first-of-its-kind comparative evaluation within a consistent experimental framework and considering factors like model size, token consumption, latency, among others, we show that existing approaches are inherently characterised by trade-offs between effectiveness and efficiency. We find that while Pointwise approaches score high on efficiency, they suffer from poor effectiveness. Conversely, Pairwise approaches demonstrate superior effectiveness but incur high computational overhead. Our Setwise approach, instead, reduces the number of LLM inferences and the amount of prompt token consumption during the ranking procedure, compared to previous methods. This significantly improves the efficiency of LLM-based zero-shot ranking, while also retaining high zero-shot ranking effectiveness. We make our code and results publicly available at https://github.com/ielab/llm-rankers.
View details
Beyond SOT: Tracking Multiple Generic Objects at Once
Christoph Mayer
Martin Danelljan
Vittorio Ferrari
Luc Van Gool
WACV'24 (2024)
Preview abstract
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. However multiobject GOT poses its own challenges and is more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new largescale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint
tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4× faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, results and trained models are available at https://github.com/visionml/pytracking.
View details
SAC124 - SSAC Advice on Name Collision Analysis
Internet Corporation for Assigned Names and Numbers (ICANN), ICANN Security and Stability Advisory Committee (SSAC) Reports and Advisories (2024), pp. 15
Preview abstract
In this document the Security and Stability Advisory Committee (SSAC) provides its analysis of
the findings and recommendations presented within the Name Collision Analysis Project
(NCAP) Study Two and the proposed Name Collision Risk Assessment Framework. The SSAC
also provides additional commentary on several aspects of the NCAP Study Two Report and
makes recommendations to the ICANN Board.
View details
SQL Has Problems. We Can Fix Them: Pipe Syntax In SQL
Shannon Bales
Matthew Brown
Jean-Daniel Browne
Brandon Dolphin
Romit Kudtarkar
Andrey Litvinov
Jingchi Ma
John Morcos
Michael Shen
David Wilhite
Xi Wu
Lulan Yu
Proc. VLDB Endow. (2024), pp. 4051-4063 (to appear)
Preview abstract
SQL has been extremely successful as the de facto standard language for working with data. Virtually all mainstream database-like systems use SQL as their primary query language. But SQL is an old language with significant design problems, making it difficult to learn, difficult to use, and difficult to extend. Many have observed these challenges with SQL, and proposed solutions involving new languages. New language adoption is a significant obstacle for users, and none of the potential replacements have been successful enough to displace SQL.
In GoogleSQL, we’ve taken a different approach - solving SQL’s problems by extending SQL. Inspired by a pattern that works well in other modern data languages, we added piped data flow syntax to SQL. The results are transformative - SQL becomes a flexible language that’s easier to learn, use and extend, while still leveraging the existing SQL ecosystem and existing userbase. Improving SQL from within allows incrementally adopting new features, without migrations and without learning a new language, making this a more productive approach to improve on standard SQL.
View details
BEYOND THE CODE: AI REGULATIONS AS THE SECRET COMPASS OF ENGINEERING MANAGERS
Proceedings of the American Society for Engineering Management 2024 International Annual Conference (2024)
Preview abstract
Technology is a product of society. As technology evolves, the norms governing it have to mature for enabling its proper use within the society. The interest in Artificial Intelligence (AI) has surged following the introduction of chatGPT. Firms, both large and small, are competing to develop new products and solutions involving AI. Amidst these developments, leading corporations such as Google and Microsoft have proactively committed to upholding responsible innovation in AI development. Governments worldwide are responding with the creation of guidelines and regulations in the field. Notably, in March 2024, the United Nations General Assembly (UNGA) adopted landmark regulation on AI.
At the heart of these developments in AI are engineering managers who leverage technical advances to build products and services that create value. To effectively harness AI for human benefit, engineering managers must be aware of these evolving regulations governing AI. Some regulations such as Digital Markets Act (DMA) and General Data Protection Regulations (GDPR) have far reaching consequences for organizations globally. Having a working knowledge of these statutory requirements will enable engineering managers to identify the opportunities and constraints in leveraging AI technology while building products and services. It will allow them to make informed decisions about data collection methods, model training processes, the deployment of AI systems and metrics for their evaluation. At scale, it can become a competitive advantage for the firms they work in, as explored through real-world examples in this paper.
View details
CodeQueries: A Dataset of Semantic Queries over Code
Surya Prakash Sahu
Madhurima Mandal
Shikhar Bharadwaj
Aditya Kanade
Shirish Shevade
Innovations in Software Engineering (ISEC), ACM, Bangalore, India (2024)
Preview abstract
Developers often have questions about semantic aspects of code
they are working on, e.g., “Is there a class whose parent classes
declare a conflicting attribute?”. Answering them requires understanding code semantics such as attributes and inheritance relation
of classes. An answer to such a question should identify code spans
constituting the answer (e.g., the declaration of the subclass) as well
as supporting facts (e.g., the definitions of the conflicting attributes).
The existing work on question-answering over code has considered
yes/no questions or method-level context. We contribute a labeled
dataset, called CodeQueries, of semantic queries over Python code.
Compared to the existing datasets, in CodeQueries, the queries
are about code semantics, the context is file level and the answers
are code spans. We curate the dataset based on queries supported
by a widely-used static analysis tool, CodeQL, and include both
positive and negative examples, and queries requiring single-hop
and multi-hop reasoning.
To assess the value of our dataset, we evaluate baseline neural
approaches. We study a large language model (GPT3.5-Turbo) in
zero-shot and few-shot settings on a subset of CodeQueries. We
also evaluate a BERT style model (CuBERT) with fine-tuning. We
find that these models achieve limited success on CodeQueries.
CodeQueries is thus a challenging dataset to test the ability of
neural models, to understand code semantics, in the extractive
question-answering setting
View details
Relational Affect in Dyadic Interactions
CHI Conference on Human Factors in Computing Systems (2024)
Preview abstract
Relational affect is the affective response (encompassing emotion, expression, feeling) that emerges from an interaction between two people. The case study presented here introduces the concept of relational affect through a human perceptual rating task. Forty-five raters watched short video clips of two people interacting and described their perceived emotion of the individuals and that of the overall interaction. Our qualitative analysis of the rater responses showed that raters used a variety of schemes to reason about emotion, including expressions, context, and perceived appraisal of the event. These reasoning schemes were notably different for perceived individual emotion and relational affect. Our findings show that the vocabulary use for relational affect is distinct from that of individual emotion and relational affect as a phenomenon deepens our understanding of social interactions and moves the field a step closer to realizing the goal of fluid interactions between people and technology.
View details
Reinforcement Learning-Enhanced Cloud-Based Open Source Analog Circuit Generator for Standard and Cryogenic Temperatures in 130-nm and 180-nm OpenPDKs
Ali Hammoud
Anhang Li
Ayushman Tripathi
Wen Tian
Harsh Khandeparkar
Ryan Wans
Boris Murmann
Dennis Sylvester
Mehdi Saligane
Preview abstract
This work introduces an open-source, Process Technology-agnostic framework for hierarchical circuit netlist, layout, and Reinforcement Learning (RL) optimization. The layout, netlist, and optimization python API is fully modular and publicly installable via PyPI. It features a bottom-up hierarchical construction, which allows for complete design reuse across provided PDKs. The modular hierarchy also facilitates parallel circuit design iterations on cloud platforms. To illustrate its capabilities, a two-stage OpAmp with a 5T first-stage, commonsource second-stage, and miller compensation is implemented. We instantiate the OpAmp in two different open-source process design kits (OpenPDKs) using both room-temperature models and cryogenic (4K) models. With a human designed version as the baseline, we leveraged the parameterization capabilities of the framework and applied the RL optimizer to adapt to the power consumption limits suitable for cryogenic applications while maintaining gain and bandwidth performance. Using the modular RL optimization framework we achieve a 6x reduction in power consumption compared to manually designed circuits while maintaining gain to within 2%.
View details
Using large language models to accelerate communication for eye gaze typing users with ALS
Subhashini Venugopalan
Katie Seaver
Xiang Xiao
Sri Jalasutram
Ajit Narayanan
Bob MacDonald
Emily Kornman
Daniel Vance
Blair Casey
Steve Gleason
(2024)
Preview abstract
Accelerating text input in augmentative and alternative communication (AAC) is a long-standing area of research with bearings on the quality of life in individuals with profound motor impairments. Recent advances in large language models (LLMs) pose opportunities for re-thinking strategies for enhanced text entry in AAC. In this paper, we present SpeakFaster, consisting of an LLM-powered user interface for text entry in a highly-abbreviated form, saving 57% more motor actions than traditional predictive keyboards in offline simulation. A pilot study on a mobile device with 19 non-AAC participants demonstrated motor savings in line with simulation and relatively small changes in typing speed. Lab and field testing on two eye-gaze AAC users with amyotrophic lateral sclerosis demonstrated text-entry rates 29–60% above baselines, due to significant saving of expensive keystrokes based on LLM predictions. These findings form a foundation for further exploration of LLM-assisted text entry in AAC and other user interfaces.
View details
Preview abstract
We propose a new Markov Decision Process (MDP) model for ad auctions to capture the
user response to the quality of ads, with the objective of maximizing the long-term discounted
revenue. By incorporating user response, our model takes into consideration all three parties
involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a
user-specific click-through rate (CTR) with the CTR changing in the next round according to the
set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson’s auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Leveraging this characterization, we design a sample-efficient and computationally-efficient algorithm which outputs an approximately optimal policy that requires only sample access to the true MDP and the value distributions of the bidders. Finally, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue.
View details