Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10192 publications
Preview abstract
Today’s smartphone interactions are typically designed with one primary preset, accompanied by customization settings that can be manually adjusted. To promote the creation of contextually aware experiences, researchers have highlighted the factors that influence mobile device usage in the ability-based design framework. This paper expands upon existing frameworks and contributes to an empirical understanding of smartphone accessibility. Through a 10-day longitudinal diary study and video interview with 24 individuals who do and do not identify as having a disability, the research also illustrates the reactions of reattempt, adaptation, and avoidance, which were used in response to a lack of smartphone accessibility. Despite experiencing scenarios where accessibility settings could be leveraged, 20 out of 24 participants did not use accessibility settings on their smartphone. A total of 12 out of 24 participants tried accessibility settings on their smartphones, however identifying accessibility was not for them. This work highlights the need to shift current design practices to better serve the accessibility community.
View details
Preview abstract
Storage on Android has evolved significantly over the years, with each new Android version introducing changes aimed at enhancing usability, security, and privacy. While these updates typically help with restricting app access to storage through various mechanisms, they may occasionally introduce new complexities and vulnerabilities. A prime example is the introduction of scoped storage in Android 10, which fundamentally changed how apps interact with files. While intended to enhance user privacy by limiting broad access to shared storage, scoped storage has also presented developers with new challenges and potential vulnerabilities to address. However, despite its significance for user privacy and app functionality, no systematic studies have been performed to study Android’s scoped storage at depth from a security perspective. In this paper, we present the first systematic security analysis of the scoped storage mechanism. To this end, we design and implement a testing tool, named ScopeVerif, that relies on differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif takes a list of security properties and checks if there are any file operations that violate any security properties defined in the official Android documentation. Additionally, we conduct a comprehensive analysis across different Android versions as well as a cross-OEM analysis to identify discrepancies in different implementations and their security implications. Our study identifies both known and unknown issues of scoped storage. Our cross-version analysis highlights undocumented changes as well as partially fixed security loopholes across versions. Additionally, we discovered several vulnerabilities in scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and correct behavior, which potentially poses security risks. The affected OEMs and Google have acknowledged our findings and offered us bug bounties in response.
View details
Preview abstract
We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods.
Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City.
View details
Databases in the Era of Memory-Centric Computing
Anastasia Ailamaki
Lawrence Benson
Helena Caminal
Jana Gičeva
Eric Seldar
Lisa Wu Wills
Preview abstract
The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud.
View details
PreFix: Optimizing the Performance of Heap-Intensive Applications
Chaitanya Mamatha Ananda
Rajiv Gupta
Han Shen
CGO 2025: International Symposium on Code Generation and Optimization, Las Vegas, NV, USA (to appear)
Preview abstract
Analyses of heap-intensive applications show that a small fraction of heap objects account for the majority of heap accesses and data cache misses. Prior works like HDS and HALO have shown that allocating hot objects in separate memory regions can improve spatial locality leading to better application performance. However, these techniques are constrained in two primary ways, limiting their gains. First, these techniques have Imperfect Separation, polluting the hot memory region with several cold objects. Second, reordering of objects across allocations is not possible as the original object allocation order is preserved. This paper presents a novel technique that achieves near perfect separation of hot objects via a new context mechanism that efficiently identifies hot objects with high precision. This technique, named PreFix, is based upon Preallocating memory for a Fixed small number of hot objects. The program, guided by profiles, is instrumented to compute context information derived from
dynamic object identifiers, that precisely identifies hot object allocations that are then placed at predetermined locations in the preallocated memory. The preallocated memory region for hot objects provides the flexibility to reorder objects across allocations and allows colocation of objects that are part of a hot data stream (HDS), improving spatial locality. The runtime overhead of identifying hot objects is not significant as this optimization is only focused on a small number of static hot allocation sites and dynamic hot objects. While there is an increase in the program’s memory foot-print, it is manageable and can be controlled by limiting the size of the preallocated memory. In addition, PreFix incorporates an object recycling optimization that reuses the same preallocated space to store different objects whose lifetimes are not expected to overlap. Our experiments with 13 heap-intensive applications yields reductions in execution times ranging from 2.77% to 74%. On average PreFix reduces execution time by 21.7% compared to 7.3% by HDS and 14% by HALO. This is due to PreFix’s precision in hot object identification, hot object colocation, and low runtime overhead.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Youngmin Cho
Richard Allen
Patrick Robertson
Robert Bosch
Nivetha Thiruverahan
Alexei Barski
Tajinder Gadh
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Preview abstract
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma.
View details
Preview abstract
The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally
productive.
The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter.
As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case.
View details
Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns
Ariel Goldstein
Avigail Grinstein-Dabush
Haocheng Wang
Zhuoqiao Hong
Bobbi Aubrey
Samuel A. Nastase
Zaid Zada
Eric Ham
Harshvardhan Gazula
Eliav Buchnik
Werner Doyle
Sasha Devore
Patricia Dugan
Roi Reichart
Daniel Friedman
Orrin Devinsky
Adeen Flinker
Uri Hasson
Nature Communications (2024)
Preview abstract
Contextual embeddings, derived from deep language models (DLMs), provide
a continuous vectorial representation of language. This embedding space
differs fundamentally from the symbolic representations posited by traditional
psycholinguistics. We hypothesize that language areas in the human brain,
similar to DLMs, rely on a continuous embedding space to represent language.
To test this hypothesis, we densely record the neural activity patterns in the
inferior frontal gyrus (IFG) of three participants using dense intracranial arrays
while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation
for each word (i.e., a brain embedding) in each patient. We demonstrate that
brain embeddings in the IFG and the DLM contextual embedding space have
common geometric patterns using stringent zero-shot mapping. The common
geometric patterns allow us to predict the brain embedding of a given left-out
word in IFG based solely on its geometrical relationship to other nonoverlapping words in the podcast. Furthermore, we show that contextual
embeddings better capture the geometry of IFG embeddings than static word
embeddings. The continuous brain embedding space exposes a vector-based
neural code for natural language processing in the human brain.
View details
Fashion-VDM: Video Diffusion Model for Virtual Try-On
Johanna Karras
Yingwei Li
Nan Liu
Luyang Zhu
Innfarn Yoo
Andreas Lugmayr
Chris Lee
Fashion-VDM: Video Diffusion Model for Virtual Try-On (2024) (to appear)
Preview abstract
We present Fashion-VDM, a video diffusion model (VDM) for generating virtual try-on videos. Given an input garment image and person video, our method aims to generate a high-quality try-on video of the person wearing the given garment, while preserving the person's identity and motion. Image-based virtual try-on has shown impressive results; however, existing video virtual try-on (VVT) methods are still lacking garment details and temporal consistency. To address these issues, we propose a diffusion-based architecture for video virtual try-on, split classifier-free guidance for increased control over the conditioning inputs, and a progressive temporal training strategy for single-pass 64-frame, 512px video generation. We also demonstrate the effectiveness of joint image-video training for video try-on, especially when video data is limited. Our qualitative and quantitative experiments show that our approach sets the new state-of-the-art for video virtual try-on. For additional results, visit our project page: https://johannakarras.github.io/Fashion-VDM/
View details
Seeking in Cycles: How Users Leverage Personal Information Ecosystems to Find Mental Health Information
Ashlee Milton
Fernando Maestre
Rebecca Umbach
Stevie Chancellor
Proceedings of the CHI Conference on Human Factors in Computing Systems (2024)
Preview abstract
Information is crucial to how people understand their mental health and well-being, and many turn to online sources found through search engines and social media. We present the findings from an interview study (n = 17) of participants who use online platforms to seek information about their mental illnesses. We found that participants leveraged multiple platforms in a cyclical process for finding information from their personal information ecosystems, driven by the adoption of new information and uncertainty surrounding the credibility of information. Concerns about privacy, fueled by perceptions of stigma and platform design, also influenced their information-seeking decisions. Our work proposes theoretical implications for social computing and information retrieval on information seeking in users' personal information ecosystems. We also offer design implications to support users in navigating their personal information ecosystems to find mental health information.
View details
SAC125 - SSAC Report on Registrar Nameserver Management
Gautam Akiwate
Tim April
kc claffy
Internet Corporation for Assigned Names and Numbers (ICANN), ICANN Security and Stability Advisory Committee (SSAC) Reports and Advisories (2024), pp. 56
Preview abstract
During domain registration, a minimum of two nameservers are typically required, and this
remains a requirement for any future updates to the domain. Often, domains are delegated to
nameservers that are subordinate to some other domains, creating inter-domain dependencies.
This network of dependencies creates a scenario where the functionality of a domain depends
on the operational status of another domain. This setup lacks contractual or procedural
safeguards against disruption or misuse, especially when the nameserver parent domain expires.
Most registries forbid deleting an expired domain if other domains depend on it for name
resolution. These constraints aim to prevent disruptions in DNS resolution for the dependent
domains. However, this also means that the expired domain remains in a liminal state, neither
fully operational nor completely removed. When registrars cannot delete expired domains with
dependents, they are forced to bear the burden of sponsoring the domain without remuneration
from the registrant. A peer-reviewed study, "Risky BIZness: Risks derived from Registrar Name
Management," observed that some registrars have found and utilized a loophole to these
constraints by renaming the host objects that are subordinate to the expiring domain.1 Once
renamed, the host objects are what Akiwate et al.—and subsequently the SSAC—refers to as
sacrificial nameservers.
This report focuses on a specific type of sacrificial nameserver where the parent domains of the renamed host objects are considered to be unsafe because they are registrable. Registrable
parent domains of sacrificial nameservers introduce a new attack surface for domain resolution
hijacking, as malicious actors can exploit unsafe sacrificial nameservers to gain unauthorized
control over the dependent domains, leading to manipulation or disruption. Unlike traditional
domain hijacking techniques that exploit compromised account credentials or manipulate the
resolution protocol, this report focuses on this unforeseen risk arising from a longstanding
practice employed by some registrars.
In this report, the SSAC explores potential solutions to remediate exposed domains and prevent
the creation of new unsafe sacrificial nameservers. The SSAC examines each proposed solution for its feasibility, effectiveness, and potential to reduce the attack surface without introducing undue complexity or new vulnerabilities into the DNS ecosystem.
View details
Automatic Speech Recognition of Conversational Speech in Individuals with Disordered Speech
Bob MacDonald
Rus Heywood
Richard Cave
Katie Seaver
Antoine Desjardins
Jordan Green
Journal of Speech, Language, and Hearing Research (2024) (to appear)
Preview abstract
Purpose: This study examines the effectiveness of automatic speech recognition (ASR) for individuals with speech disorders, addressing the gap in performance between read and conversational ASR. We analyze the factors influencing this disparity and the effect of speech mode-specific training on ASR accuracy.
Method: Recordings of read and conversational speech from 27 individuals with various speech disorders were analyzed using both (1) one speaker-independent ASR system trained and optimized for typical speech and (2) multiple ASR models that were personalized to the speech of the participants with disordered speech. Word Error Rates (WERs) were calculated for each speech mode, read vs conversational, and subject. Linear mixed-effect models were used to assess the impact of speech mode and disorder severity on ASR accuracy. We investigated nine variables, classified as technical, linguistic, or speech impairment factors, for their potential influence on the performance gap.
Results: We found a significant performance gap between read and conversational speech in both personalized and unadapted ASR models. Speech impairment severity notably impacted recognition accuracy in unadapted models for both speech modes and in personalized models for read speech. Linguistic attributes of utterances were the most influential on accuracy, though atypical speech characteristics also played a role. Including conversational speech samples in model training notably improved recognition accuracy.
Conclusions: We observed a significant performance gap in ASR accuracy between read and conversational speech for individuals with speech disorders. This gap was largely due to the linguistic complexity and unique characteristics of speech disorders in conversational speech. Training personalized ASR models using conversational speech significantly improved recognition accuracy, demonstrating the importance of domain-specific training and highlighting the need for further research into ASR systems capable of handling disordered conversational speech effectively.
View details
Android Permissions: Evolution, Attacks, and Best Practices
IEEE Security & Privacy (2024)
Preview abstract
In this article, we study the evolution of Android permissions. We describe the rationale behind key changes in Android’s permission model and disclose two permission-related security vulnerabilities we discovered. Finally, we provide developers actionable insights to proactively address permission-related security and privacy risks during development.
View details
Scaling Up LLM Reviews for Google Ads Content Moderation
Ariel Fuxman
Chih-Chun Chia
Dongjin Kwon
Enming Luo
Mehmet Tek
Ranjay Krishna
Tiantian Fang
Tushar Dogra
Yu-Han Lyu
(2024)
Preview abstract
Large language models (LLMs) are powerful tools for content moderation but LLM inference costs and latency on large volumes of data, such as the Google Ads repository, are prohibitive for their casual usage. This study is focused on scaling up LLM reviews for content moderation in Google Ads. First, we use heuristics to select candidates via filtering and duplicate removal, and create clusters of ads for which we select one representative ad per cluster. Then, LLMs are used to review only the representative ads. Finally we propagate the LLM decisions for representative ads back to their clusters. This method reduces the number of reviews by more than 3 orders of magnitude while achieving a 2x recall compared to a non-LLM model as a baseline. Note that, the success of this approach is a strong function of the representations used in clustering and label propagation; we observed that cross-modal similarity representations yield better results than uni-modal representations.
View details