Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10822 publications
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
mmMUSE: An mmWave-based Motion-resilient Universal Speech Enhancement System
Chenming He
Yanyong Zhang
Kai Wang
Dequan Wang
Lingyu Wang
the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), ACM (2026) (to appear)
Preview abstract
Voice-based smart systems can greatly enhance user experiences by allowing higher-quality interactions through better voice perception. Speech enhancement can benefit such systems by isolating noise from speech. Recently, integrating millimeter-wave (mmWave) with audio for speech perception has gained increasing attention due to microphones' limitations in noisy environments. However, mmWave-based vocal extraction is severely affected by motion, which disperses vocal signals across ranges and introduces distortions. In this paper, we propose an mmWave-based motion-resilient universal speech enhancement system called mmMUSE, which fuses mmWave and audio signals. To mitigate motion interference, we develop a Doppler-based method for motion-robust vocal signal extraction. Moreover, by introducing the Vocal-Noise-Ratio metric to assess the prominence of vocal signals from mmWave, we achieve real-time voice activity detection that gains 3.81 dB of SISDR in noisy speeches. Additionally, we design a two-stage complex-valued network that includes an attention-based fusion network for cross-modal complementing and a time-frequency masking network for correcting amplitude and phase of speech to isolate noises.
Using mmWave and audio datasets from 46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models, achieving an average SISDR improvement of 3.12 dB. Additionally, mmMUSE achieves SISDR improvements of 16.51 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments involving intense noise, extensive motion, multiple speakers, and various obstructive materials, respectively. Finally, we evaluate mmMUSE in real-world scenarios including running, public spaces, and driving, maintaining a word error rate (WER) below 10%.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Binamix -- A Python Library for Generating Binaural Audio Datasets
Dan Barry
Davoud Shariat Panah
Alessandro Ragano
Andrew Hines
AES 158th Audio Engineering Society Convention (2025)
Preview abstract
The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library’s capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for
binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/
View details
The Grand Challenge of Quantum Applications
Robbie King
Bill Huggins
Guang Hao Low
Tom O'Brien
arXiv:2511.09124 (2025)
Preview abstract
This perspective outlines promising pathways and critical obstacles on the road to developing useful quantum computing applications, drawing on insights from the Google Quantum AI team. We propose a five-stage framework for this process, spanning from theoretical explorations of quantum advantage to the practicalities of compilation and resource estimation. For each stage, we discuss key trends, milestones, and inherent scientific and sociological impediments. We argue that two central stages -- identifying concrete problem instances expected to exhibit quantum advantage, and connecting such problems to real-world use cases -- represent essential and currently under-resourced challenges. Throughout, we touch upon related topics, including the promise of generative artificial intelligence for aspects of this research, criteria for compelling demonstrations of quantum advantage, and the future of compilation as we enter the era of early fault-tolerant quantum computing.
View details
Preview abstract
Hashing is a fundamental operation in various computer sci-
ence applications. Despite the prevalence of specific key
formats like social security numbers, MAC addresses, plate
numbers, and URLs, hashing libraries typically treat them as
general byte sequences. This paper introduces a technique
for synthesizing specialized hash functions tailored to par-
ticular byte formats. The proposed code generation method
leverages three prevalent patterns: (i) fixed-length keys, (ii)
keys with common subsequences, and (iii) keys ranging on
predetermined sequences of bytes. The code generation pro-
cess involves two algorithms: one identifies relevant regular
expressions within key examples, and the other generates
specialized hash functions based on these expressions. This
approach, straightforward to implement, showcases improve-
ments over highly optimized hash function implementations.
Comparative analysis demonstrates that our synthetic func-
tions outperform counterparts in the C++ Standard Template
Library and the Google Abseil Library, achieving speedups
ranging from 2% to 11%, depending on the key format.
View details
Pragmatic Fairness: Evaluating ML Fairness Within the Constraints of Industry
Jessie Smith
Michael Madaio
Robin Burke
Casey Fiesler
2025
Preview abstract
Machine learning (ML) fairness evaluation in real-world, industry settings presents unique challenges due to business-driven constraints that influence decision-making processes. While prior research has proposed fairness frameworks and evaluation methodologies, these approaches often focus on idealized conditions and may lack consideration for the practical realities faced by industry practitioners. To understand these practical realities, we conducted a semi-structured interview study with 21 experts from academia and industry specializing in ML fairness. Through this study, we explore three constraints of ML fairness evaluation in industry— balancing competing interests, lacking power/access, and getting buy-in—and how these constraints lead to satisficing, seeking satisfactory rather than ideal outcomes. We define the path from these constraints to satisficing as pragmatic fairness. Using recommender systems as a case study, we explore how practitioners navigate these constraints and highlight actionable strategies to improve fairness evaluations within these business-minded boundaries. This paper provides practical insights to guide fairness evaluations in industry while also showcasing how the FAccT community can better align research goals with the operational realities of practitioners.
View details
Preview abstract
Browser fingerprinting is an online tracking technique that is being increasingly adopted for profiling and ad targeting purposes. While prior work has analyzed the prevalence and impact of browser fingerprinting on the Web, they have traditionally relied on large-scale automated crawls. Naturally, these cannot replicate real-human interactions, e.g., solve CAPTCHAs, evade bot detectors, or operate behind login pages and paywalls. This prompts the question as to whether or not the fingerprinting ecosystem is appreciably different in real-world browsing sessions. In this paper, we begin to address this question by designing and conducting a user study aimed at collecting actual telemetry data from real browsing sessions of 30 users.
We find that almost half of the fingerprinting websites identified from real user browsing sessions are missed by equivalent automated crawls. This is mainly due to the inability of automated crawls to identify and visit authentication pages, being blocked by bot detectors, and/or failing to perform user interactions that specifically trigger browser fingerprinting scripts. We also find new fingerprinting vectors that are consistently present in fingerprinting scripts captured by real user browsing sessions yet missing from automated crawls. Finally, we assess the feasibility of collecting fingerprinting training data in a privacy-preserving way. We conclude that private models built on real user browsing sessions can detect browser fingerprinting more effectively than models trained on automated crawls alone, while simultaneously providing strong privacy guarantees to users.
View details
Preview abstract
Settler colonialism has led to ancestral language endangerment and extinction on a mass scale. It has also forced `global' languages such as English on Indigenous communities worldwide. In Australia, post-contact languages, including creoles, and local varieties of international languages emerged as a result of forced contact with English speakers. These contact varieties are widely used, but to date they have to-date been poorly supported by language technologies. This oversight presents barriers to participation in civil and economic society for Indigenous communities using these languages. It also reproduces minoritisation of contemporary Indigenous sociolinguistic identities. This paper concerns the question of whether (and, if so, how) Indigenous people may be supported by technologies for their non-ancestral languages. We argue that multiple real-world opportunities exist, and explore this position through a case study of a project which aims to improve Automated Speech Recognition for Australian Aboriginal English. We discuss how we integrated culturally appropriate processes into the project. We call for increased support for languages used by Indigenous communities, including contact varieties, providing practical economic and socio-cultural benefits.
View details
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
Vaishnavh Nagarajan
Chen Wu
Charles Ding
Aditi Raghunathan
2025
Preview abstract
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic; multi-token approaches, namely teacherless training and diffusion models, comparatively excel in producing diverse and original output. Secondly, to elicit randomness without hurting coherence, we find that injecting noise at the input layer (dubbed seed-conditioning) works surprisingly as well as (and in some conditions, better than) temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and temperature sampling.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Tajinder Gadh
Richard Allen
Alexei Barski
Robert Bosch
Patrick Robertson
Youngmin Cho
Nivetha Thiruverahan
Aman Raj
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Preview abstract
Computer use agents (CUAs) need to plan long-horizon task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data. Existing datasets are small, domain-specific, and costly to annotate, while current synthetic data generation methods often yield brittle, simplistic, or misaligned task demonstrations.
We introduce Watch & Learn (W&L), a framework that transforms human demonstration videos available in the Internet into executable UI trajectories at scale. Inspired by robotics, we train an inverse dynamics model that accurately predicts user actions from consecutive screens, bypassing the need for complex heuristics. To scale to the web, we curate a large state-transition corpus and design a retrieval framework that identifies relevant video tutorials, enabling automatic conversion of raw videos into structured UI trajectories without requiring manual annotations. Beyond training data, we show that the generated UI trajectories can also serve as in-context exemplars, providing CUAs with long-horizon priors and domain-specific knowledge at inference time.
On the challenging OSWorld and Mind2Web benchmarks, UI trajectories extracted with W&L consistently improve both general-purpose and state-of-the-art frameworks when used in-context, and delivers stronger gains for open-source models when used in training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
View details
Preview abstract
Large language models (LLMs), optimized through human feedback, have rapidly emerged as a leading paradigm for developing intelligent conversational assistants. However, despite their strong performance across many benchmarks, LLM-based agents might still lack conversational skills such as disambiguation -- when they are faced with ambiguity, they often overhedge or implicitly guess users' true intents rather than asking clarification questions. Under task-specific settings, high-quality conversation samples are often limited, constituting a bottleneck for LLMs' ability to learn optimal dialogue action policies. We propose Action-Based Contrastive Self-Training (ACT), a quasi-online preference optimization algorithm based on Direct Preference Optimization (DPO), that enables data-efficient dialogue policy learning in multi-turn conversation modeling. We demonstrate ACT's efficacy under data-efficient tuning scenarios, even when there is no action label available, using multiple real-world conversational tasks: tabular-grounded question-answering, machine reading comprehension, and AmbigSQL, a novel task for disambiguating information-seeking requests for complex SQL generation towards data analysis agents. Additionally, we propose evaluating LLMs' ability to function as conversational agents by examining whether they can implicitly recognize and reason about ambiguity in conversation. ACT demonstrates substantial conversation modeling improvements over standard tuning approaches like supervised fine-tuning and DPO.
View details
Spherical dimension
Bogdan Chornomaz
Shay Moran
Tom Waknine
2025
Preview abstract
We introduce and study the \emph{spherical dimension}, a natural topological relaxation of the VC dimension that unifies several results in learning theory where topology plays a key role in the proofs. The spherical dimension is defined by extending the set of realizable datasets (used to define the VC dimension) to the continuous space of realizable distributions. In this space, a shattered set of size d (in the VC sense) is completed into a continuous object, specifically a d-dimensional sphere of realizable distributions. The spherical dimension is then defined as the dimension of the largest sphere in this space. Thus, the spherical dimension is at least the VC dimension.
The spherical dimension serves as a common foundation for leveraging the Borsuk-Ulam theorem and related topological tools. We demonstrate the utility of the spherical dimension in diverse applications, including disambiguations of partial concept classes, reductions from classification to stochastic convex optimization, stability and replicability, and sample compression schemes. Perhaps surprisingly, we show that the open question posed by Alon, Hanneke, Holzman, and Moran (FOCS 2021) of whether there exist non-trivial disambiguations for halfspaces with margin is equivalent to the basic open question of whether the VC and spherical dimensions are finite together.
View details
Preview abstract
Intuitively, the more complex a software system is, the harder it is to maintain. Statistically, it is not clear which complexity measures correlate with maintenance effort; in fact, it is not even clear how to objectively measure maintenance burden, so that developers’ sentiment and intuition can be supported by numbers. Without effective complexity and maintenance measures, it remains difficult to objectively monitor maintenance, control complexity, or justify refactoring. In this paper, we report a large-scale study of 1200+ projects written in C++ and Java from Google LLC. In this study, we collected three categories of measures: (1) architectural complexity, measured using propagation cost (PC), decoupling level (DL), and structural anti-patterns; (2) maintenance activity, measured using the number of changes, lines of code (LOC) written, and active coding time (ACT) spent on feature-addition vs. bug-fixing, and (3) developer sentiment on complexity and productivity, collected from 7200 survey responses. We statistically analysed the correlations among these measures and obtained significant evidence of the following findings: 1) the more complex the architecture is (higher propagation cost, more instances of anti-patterns), the more LOC is spent on bug-fixing, rather than adding new features; 2) developers who commit more changes for features, spend more lines of code on features, or spend more time on features also feel that they are less hindered by technical debt and complexity. To the best of our knowledge, this is the first large-scale empirical study establishing the statistical correlation among architectural complexity, maintenance activity, and developer sentiment. The implication is that, instead of solely relying upon developer sentiment and intuitions to detect degraded structure or increased burden to evolve, it is possible to objectively and continuously measure and monitor architectural complexity and maintenance difficulty, increasing feature delivery efficiency by reducing architectural complexity and anti-patterns.
View details