Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 11091 publications
`It’s still abuse’: Community attitudes and perceptions on AI-generated image-based sexual abuse
Nicola Henry
Gemma Beard
Lisa Given
Information, Communication, & Society (2026)
Preview abstract
There are growing concerns about AI-generated image-based sexual abuse (AI-IBSA), also known as nonconsensual sexualized ′deepfakes.′ Empirical research on AI-IBSA, however, remains very limited. This study surveyed 7231 respondents across Australia, the United Kingdom, and the United States to investigate community attitudes and perceptions on AI-IBSA. Through a vignette study, we explored the relationship between public familiarity with AI-IBSA, normative concerns about consent, and context-dependent judgments that vary based on the target's identity relational status, and how the content was used. Our findings reveal strong condemnation of AI-IBSA, yet respondents demonstrated low familiarity with the technology and their views varied depending on particular contexts. AI-IBSA targeting intimate partners was viewed as more unacceptable than targeting celebrities, and content created solely for personal use was seen as less unacceptable than content intended for distribution. The study highlights the need for approaches that go beyond technical fixes and punitive measures, advocating for a multifaceted response that integrates ethical data governance, digital sexual literacy, and restorative justice approaches.
View details
CrossCheck: Input Validation for WAN Control Systems
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
Networked Systems Design and Implementation (NSDI) (2026) (to appear)
Preview abstract
We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages.
Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data).
View details
A Computer Vision Problem in Flatland
Erin Connelly
Annalisa Crannell
Timothy Duff
Rekha R. Thomas
SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
Preview abstract
When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image.
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
Michael Madaio
Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
Preview abstract
Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place?
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
Sunny Rajagopalan
Alireza Golestaneh
Shubhra Chandra
Min Zhou
Jonathan Vronsky
Songbai Yan
2026
Preview abstract
We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
In many repeated auction settings, participants care not only about how frequently they win but also about how their winnings are distributed over time.
This problem arises in various practical domains where avoiding congested demand is crucial and spacing is important, such as advertising campaigns.
We initiate the study of repeated auctions with preferences for spacing of wins over time.
We introduce a simple model of this phenomenon, where the value of a win is given by any concave function of the time since the last win.
We study the optimal policies for this setting in repeated second-price auctions and offer learning algorithms for the bidders that achieve $\tilde O(\sqrt{T})$ regret.
We achieve this by showing that an infinite-horizon Markov decision process (MDP) with the budget constraint in expectation is essentially equivalent to our problem, \emph{even when limiting that MDP to a very small number of states}.
The algorithm achieves low regret by learning a bidding policy that chooses bids as a function of the context and the state of the system, which will be the time elapsed since the last win (or conversion).
View details
Preview abstract
Large language models (LLMs) have demonstrated remarkable performance in tasks that require reasoning abilities. Motivated by recent works showing evidence of LLMs being able to plan and reason on abstract reasoning problems in context, we conduct a set of controlled experiments on a synthetic propositional logic problem to provide a mechanistic understanding of how such abilities arise. In particular, for a decoder-only transformer trained solely on our synthetic dataset,
we identify the specific mechanisms by which a three-layer Transformer solves the reasoning task. In particular, we identify certain ``planning'' and reasoning circuits which require cooperation between the attention blocks to in totality implement the desired reasoning algorithm.
We also find that deeper models with greater number of attention heads exhibit a stronger performance on solving more complex variants of our logic problem.
View details
Scalable Private Partition Selection via Adaptive Weighting
Justin Y. Chen
Forty-second International Conference on Machine Learning (2025)
Preview abstract
In the differentially private partition selection problem (a.k.a. private set union, private key discovery), users hold subsets of items from an unbounded universe. The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy. Solutions to this problem are a core building block for many privacy-preserving ML applications including vocabulary extraction in a private corpus, computing statistics over categorical data and learning embeddings over user-provided items.
We propose an algorithm for this problem, MaxAdaptiveDegree(MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight, thereby increasing the probability that less frequent items are output. Our algorithm can be efficiently implemented in massively parallel computation systems allowing scalability to very large datasets. We prove that our algorithm stochastically dominates the standard parallel algorithm for this problem. We also develop a two-round version of our algorithm, MAD2R, where results of the computation in the first round are used to bias the weighting in the second round to maximize the number of items output. In experiments, our algorithms provide the best results across the board among parallel algorithms and scale to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms.
View details
Preview abstract
Obtaining accurate representations of the eigenstates of an array of coupled superconducting qubits is a crucial step in the design of circuit quantum electrodynamics (circuit-QED)-based quantum processors. However, exact diagonalization of the device Hamiltonian is challenging for system sizes beyond tens of qubits. Here, we employ a tensor network method based on the density matrix renormalization group (DMRG) algorithm, DMRG-X, to efficiently obtain localized eigenstates of a 2D transmon array without the need to first compute lower-energy states. We also introduce MTDMRG-X, a new algorithm that combines DMRG-X with multi-target DMRG to efficiently compute excited states even in regimes with strong eigenstate hybridization. We showcase the use of these methods for the analysis of long-range couplings in a multi-transmon Hamiltonian including qubits and couplers, and we discuss eigenstate localization. These developments facilitate the design and parameter optimization of large-scale superconducting quantum processors.
View details
Multi-Agent Combinatorial Contracts
Paul Duetting
Tomer Ezra
Michal Feldman
Thomas Kesselheim
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2025), pp. 1857 - 1891
Preview abstract
Combinatorial contracts are emerging as a key paradigm in algorithmic contract design, paralleling the role of combinatorial auctions in algorithmic mechanism design. In this paper we study natural combinatorial contract settings involving teams of agents, each capable of performing multiple actions. This scenario extends two fundamental special cases previously examined in the literature, namely the single-agent combinatorial action model of [Duetting et al., 2021] and the multi-agent binary-action model of [Babaioff et al., 2012, Duetting et al., 2023].
We study the algorithmic and computational aspects of these settings, highlighting the unique challenges posed by the absence of certain monotonicity properties essential for analyzing the previous special cases. To navigate these complexities, we introduce a broad set of novel tools that deepen our understanding of combinatorial contracts environments and yield good approximation guarantees.
Our main result is a constant-factor approximation for submodular multi-agent multi-action problems with value and demand oracles access. This result is tight: we show that this problem admits no PTAS (even under binary actions). As a side product of our main result, we devise an FPTAS, with value and demand oracles, for single-agent combinatorial action scenarios with general reward functions, which is of independent interest. We also provide bounds on the gap between the optimal welfare and the principal's utility. We show that, for subadditive rewards, perhaps surprisingly, this gap scales only logarithmically (rather than linearly) in the size of the action space.
View details
Preview abstract
We present a novel scalable framework for training GNNs in node classification tasks, based on effective resistance, a standard tool in spectral graph theory. Unlike other spectral and graph modification approaches to GNN training, our method progressively refines the GNN weights on a sequence of random spanning trees suitably transformed into path graphs which, despite their simplicity, are shown to retain essential topological and node information of the original input graph. The sparse nature of these path graphs substantially lightens the computational burden of GNN training. This not only enhances scalability but also improves accuracy in subsequent test phases. In particular, we focus on small training set regimes, which are of great practical importance, since in many real-world scenarios labels may be challenging to obtain. We show that our framework yields very good empirical results because it effectively counters the training deterioration caused by overfitting when the training set is small. Moreover, we successfully address common issues like over-squashing and over-smoothing while, at the same time, avoiding under-reaching phenomena. Although our framework is flexible and can be deployed in several types of GNNs, in this paper we focus on graph convolutional networks and carry out an extensive experimental investigation on a number of real-world graph benchmarks, where we achieve simultaneous improvement of training speed and test accuracy over a wide pool of representative baselines.
View details