Shachi Dave

Shachi Dave

Shachi Dave is a Software Engineer in the Natural Language Understanding group at Google Research India. She received her Masters degree in Computer Science from University of Southern California, Los Angeles. Her research interests include, natural language understanding, conversational AI and data mining/modeling and their applications to various products like Search and Assistant.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Recent studies have highlighted the issue of varying degrees of stereotypical depictions for different identity group. However, these existing approaches have several key limitations, including a noticeable lack of coverage of identity groups in their evaluation, and the range of their associated stereotypes. Additionally, these studies often lack a critical distinction between inherently visual stereotypes, such as `brown' or `sombrero', and culturally influenced stereotypes like `kind' or `intelligent'. In this work, we address these limitations by grounding our evaluation of regional, geo-cultural stereotypes in the generated images from Text-to-Image models by leveraging existing textual resources. We employ existing stereotype benchmarks to evaluate stereotypes and focus exclusively on the identification of visual stereotypes within the generated images spanning 135 identity groups. We also compute the offensiveness across identity groups, and check the feasibility of identifying stereotypes automatically. Further, through a detailed case study and quantitative analysis, we reveal how the default representations of all identity groups have a more stereotypical appearance, and for historically marginalized groups, how the images across different attributes are visually more similar than other groups, even when explicitly prompted otherwise. View details
    Preview abstract While large, generative, multilingual models are rapidly being developed and deployed, their safety and fairness evaluations primarily hinge on resources collected in the English language and some limited translations. This has been demonstrated to be insufficient, and severely lacking in nuances of unsafe language and stereotypes prevalent in different languages and the geographical pockets they are prevalent in. Gathering these resources, at scale, in varied languages and regions also poses a challenge as it requires expansive sociolinguistic knowledge and can also be prohibitively expensive. We utilize an established methodology of coupling LLM generations with distributed annotations to overcome these gaps and create the resource SeeGULL Multilingual, spanning 20 languages across 23 regions. View details
    Bootstrapping Multilingual Semantic Parsers using Large Language Models
    Abhijeet Awasthi
    Bidisha Samanta
    Sunita Sarawagi
    Partha Pratim Talukdar
    Conference of the European Chapter of the Association for Computational Linguistics (EACL)(2023)
    Preview abstract Despite cross-lingual generalization demonstrated by pre-trained multilingual models, the translate-and-train paradigm of transferring English datasets across multiple languages remains to be the key ingredient for training task-specific multilingual models. However, for many low-resource languages, the availability of a reliable translation service entails significant amounts of costly human annotated translation pairs. Further, the translation services for low resource languages may continue to be brittle due to domain mismatch between the task-specific input text and the general-purpose text used while training the translation models. We consider the task of multilingual semantic parsing, and demonstrate the effectiveness and the flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting. We provide (i) Extensive comparisons with prior translate-and-train methods across 50 languages demonstrating that LLMs can serve as highly effective data translators, outperforming prior translation based methods on 40 out of 50 languages; (ii) A comprehensive study of the key design choices that enable effective data translation via prompted LLMs. View details
    Preview abstract Measurements of fairness in NLP have been critiqued for lacking concrete definitions of biases or harms measured, and for perpetuating a singular, Western narrative of fairness globally. To combat some of these pivotal issues, methods for curating datasets and benchmarks that target specific harms are rapidly emerging. However, these methods still face the significant challenge of achieving coverage over global cultures and perspectives at scale. To address this, in this paper, we highlight the utility and importance of complementary approaches in these curation strategies, which leverage both community engagement as well as large generative models. We specifically target the harm of stereotyping and demonstrate a pathway to build a benchmark that covers stereotypes about diverse, and intersectional identities. View details
    Preview abstract Along with the recent advances in large language modeling, there is growing concern that language technologies may reflect, propagate, and amplify various social stereotypes about groups of people. Publicly available stereotype benchmarks play a crucial role in detecting and mitigating this issue in language technologies to prevent both representational and allocational harms in downstream applications. However, existing stereotype benchmarks are limited in their size and coverage, largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies are gaining hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, expanding the coverage by utilizing the generative capabilities of large language models such as PaLM and GPT-3, and leveraging a globally diverse rater pool to validate prevalence of those stereotypes in society. SeeGULL is an order of magnitude larger in terms of size, and contains stereotypes for 179 identity groups spanning 6 continents, 8 different regions, 178 countries, 50 US states, and 31 Indian states and union territories. We also get fine-grained offensiveness scores for different stereotypes and demonstrate how stereotype perceptions for the same identity group differs across in-region vs out-region annotators. View details
    Parameter-Efficient Finetuning for Robust Continual Multilingual Learning
    Partha Talukdar
    Findings of the Association for Computational Linguistics: ACL 2023
    Preview abstract We introduce and study the problem of Continual Multilingual Learning (CML), where a previously trained multilingual model is periodically updated using new data arriving in stages. If the new data is present only in a subset of languages, we find that the resulting model shows improved performance only on the languages included in the latest update (and few closely related languages) while its performance on all the remaining languages degrade significantly. We address this challenge by proposing LAFT-URIEL, a parameter-efficient finetuning strategy which aims to increase the number of languages on which the model improves after an update, while reducing the magnitude of loss in performance for the remaining languages. LAFT-URIEL uses linguistic knowledge to balance overfitting and knowledge sharing across languages, thus resulting in 25% increase in the number of languages whose performances improve during an update and 78% relative decrease in average magnitude of losses on the remaining languages. View details
    Re-contextualizing Fairness in NLP: The Case of India
    Shaily Bhatt
    Partha Pratim Talukdar
    In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (AACL-IJCNLP)(2022)
    Preview abstract Recent research has revealed undesirable biases in NLP data and models. However, these efforts focus of social disparities in West, and are not directly portable to other geo-cultural contexts. In this paper, we focus on NLP fair-ness in the context of India. We start with a brief account of the prominent axes of social disparities in India. We build resources for fairness evaluation in the Indian context and use them to demonstrate prediction biases along some of the axes. We then delve deeper into social stereotypes for Region and Religion, demonstrating its prevalence in corpora and models. Finally, we outline a holistic research agenda to re-contextualize NLP fairness research for the Indian context, ac-counting for Indian societal context, bridging technological gaps in NLP capabilities and re-sources, and adapting to Indian cultural values.While we focus on India, this framework can be generalized to other geo-cultural contexts. View details
    Preview abstract Recent research has revealed undesirable biases in NLP data and models. However, these efforts focus of social disparities in West, and are not directly portable to other geo-cultural contexts. In this position paper, we outline a holistic research agenda to re-contextualize NLP fairness research for the Indian context, accounting for Indian \textit{societal context}, bridging \textit{technological} gaps in capability \& resources, and adapting to Indian cultural \textit{values}. We also report high-level findings from an empirical study on various social stereotypes for Region and Religion axes in the Indian context, demonstrating its prevalence in corpora and models. View details
    No Results Found