Jump to Content
Quan Wang

Quan Wang

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Augmenting Transformer-Transducer Based Speaker Change Detection With Token-Level Training Loss
    Han Lu
    Yiling Huang
    ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    Preview abstract In this work we propose a novel token-based training strategy that improves Transformer-Transducer (T-T) based speaker change detection (SCD) performance. The conventional T-T based SCD model loss optimizes all output tokens equally. Due to the sparsity of the speaker changes in the training data, the conventional T-T based SCD model loss leads to sub-optimal detection accuracy. To mitigate this issue, we use a customized edit-distance algorithm to estimate the SCD false accept (FA) and false reject (FR) rates during training and optimize model parameters to minimize a weighted combination of the FA and FR, focusing the model on accurately predicting speaker changes. Experiments on a group of challenging real-world datasets show that the proposed training method can significantly improve the overall performance of the SCD model with the same number of parameters. View details
    Exploring sequence-to-sequence Transformer-Transducer models for keyword spotting
    Beltrán Labrador
    Angelo Scorza Scarpati
    Liam Fowl
    ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
    Preview abstract In this paper, we present a novel approach to adapt a sequence-to-sequence Transformer-Transducer ASR system to the keyword spotting (KWS) task. We achieve this by replacing the keyword in the text transcription with a special token kw and training the system to detect the kw token in an audio stream. At inference time, we create a decision function inspired by conventional KWS approaches, to make our approach more suitable for the KWS task. Furthermore, we introduce a specific keyword spotting loss by adapting the sequence-discriminative Minimum Bayes-Risk training technique. We find that our approach significantly outperforms ASR based KWS systems. When compared with a conventional keyword spotting system, our proposal has similar performance while bringing the advantages and flexibility of sequence-to-sequence training. Additionally, when combined with the conventional KWS system, our approach can improve the performance at any operation point. View details
    Preview abstract We introduce CVSS, a massively multilingual-to-English speech-to-speech translation (S2ST) corpus, covering sentence-level parallel S2ST pairs from 21 languages into English. CVSS is derived from the Common Voice speech corpus and the CoVoST 2 speech-to-text translation (ST) corpus, by synthesizing the translation text from CoVoST 2 into speech using state-of-the-art TTS systems. Two versions of translation speeches are provided: 1) CVSS-C: All the translation speeches are in a single high-quality canonical voice; 2) CVSS-T: The translation speeches are in voices transferred from the corresponding source speeches. In addition, CVSS provides normalized translation text which matches the pronunciation in the translation speech. On each version of CVSS, we built baseline multilingual direct S2ST models and cascade S2ST models, verifying the effectiveness of the corpus. To build strong cascade S2ST baselines, we trained an ST model on CoVoST 2, which outperforms the previous state-of-the-art trained on the corpus without extra data by 5.8 BLEU. Nevertheless, the performance of the direct S2ST models approaches the strong cascade baselines when trained from scratch, and with only 0.1 or 0.7 BLEU difference on ASR transcribed translation when initialized from matching ST models. View details
    Preview abstract VoiceFilter-Lite is a speaker-conditioned voice separation model that plays a crucial role in improving speech recognition and speaker verification by suppressing overlapping speech from the non-target speaker. One limitation of VoiceFilter-Lite, and other speaker-conditioned speech models in general, is that these models are usually limited to a single target speaker. This is undesirable as most smart home devices now support multiple enrolled users. In order to extend the benefits of personalization to multiple users, we previously developed an attention-based speaker selection mechanism and applied it to VoiceFilter-Lite. However, the original multi-user VoiceFilter-Lite model suffers from significant performance degradation compared with single-user models. In this paper, we devised a series of experiments to improve the multi-user VoiceFilter-Lite model. By incorporating dual learning rates and using feature-wise linear modulation (FiLM) to condition the model with the attended embedding, we successfully closed the performance gap between multi-user and single-user VoiceFilter-Lite models on single-speaker evaluations. At the same time, the new model can also be easily extended to support any number of users, and significantly outperforms our previously published model on multi-speaker evaluations. View details
    Preview abstract In this paper, we introduce a streaming keyphrase detection system that can be easily customized to accurately detect any phrase composed of words from a large vocabulary. The system is implemented with an end-to-end trained automatic speech recognition (ASR) model and a text-independent speaker verification model. To address the challenge of detecting these keyphrases under various noisy conditions, a speaker separation model is added to the feature frontend of the speaker verification model, and an adaptive noise cancellation (ANC) algorithm is included to exploit the cross-microphone noise coherence. Our experiments show that the text-independent speaker recognition model largely reduces the false triggering rate of the keyphrase detection, while the speaker separation model and adaptive noise cancellation largely reduce false rejections. View details
    Preview abstract In this paper, we propose Textual Echo Cancellation (TEC) --- a framework for cancelling the text-to-speech (TTS) playback signal from overlapped speech. Such a system can largely improve speech recognition performance and user experience for intelligent devices such as smart speakers, as the user can talk to the device while the device is still playing the TTS signal responding to the previous query. We implement this system by using a novel sequence-to-sequence model with multi-source attention that takes both the mixture signal and the source text of the TTS playback as inputs, and predicts the enhanced audio. Experiments show that the textual information of the TTS playback signal is critical to the enhancement performance. Besides, the text sequence is much smaller in size compared with the raw acoustic signal of the TTS playback, and can be immediately transmitted to the device and the ASR server even before the playback signal is synthesized. Therefore, our proposed approach effectively reduces Internet communication and latency compared with alternative approaches such as acoustic echo cancellation (AEC). View details
    Preview abstract In this paper, we propose a solution to allow speaker conditioned speech models, such as VoiceFilter-Lite, to support an arbitrary number of enrolled users in a single pass. This is achieved by using an attention mechanism on multiple speaker embeddings to compute a single attentive embedding, which is then used as a side input to the model. We implemented multi-user VoiceFilter-Lite and evaluated it for two tasks: (1) a standard text-independent speaker verification task, where the input audio may contain overlapped speech; (2) a personalized keyphrase detection task, where ASR has to detect keyphrases from multiple enrolled users in a noisy environment. Our experiments show that with up to four enrolled users, multi-user VoiceFilter-Lite is able to significantly reduce speaker verification errors when there is overlapped speech, without hurting the performance under other acoustic conditions. This attentive speaker embedding approach can also be easily applied to other speaker-conditioned models such as personal VAD and personalized ASR. View details
    Preview abstract In this paper, we describe SpeakerStew - a hybrid system to perform speaker verification on 46 languages. Two core ideas were explored in this system: (1) Pooling training data of different languages together for multilingual generalization and reducing development cycles; (2) A triage mechanism between text-dependent and text-independent models to reduce runtime cost and expected latency. To the best of our knowledge, this is the first study of speaker verification systems at the scale of 46 languages. The problem is framed from the perspective of using a smart speaker device with interactions consisting of a wake-up keyword (text-dependent) followed by a speech query (text-independent).Experimental evidence suggests that training on multiple languages can generalize to unseen varieties while maintaining performance on seen varieties. We also found that it can reduce computational requirements for training models by an order of magnitude. Furthermore, during model inference on English data, we observe that leveraging a triage framework can reduce the number of calls to the more computationally expensive text-independent system by 73% (and reduce latency by 60%) while maintaining an EER no worse than the text-independent setup. View details
    Preview abstract In this paper, we present a novel speaker diarization system for streaming on-device applications. In this system, we use a transformer transducer to detect the speaker turns, represent each speaker turn by a speaker embedding, then cluster these embeddings with constraints from the detected speaker turns. Compared with conventional clustering-based diarization systems, our system largely reduces the computational cost of clustering due to the sparsity of speaker turns. Unlike other supervised speaker diarization systems which require annotations of timestamped speaker labels, our system only requires including speaker turn tokens during the transcribing process, which largely reduces the human efforts involved in data collection. View details
    Preview abstract This paper discusses one of the most challenging practical engineering problems in speaker recognition systems -the version control of models and user profiles. A typical speaker recognition system consists of two stages: the enrollment stage, where a profile is generated from user-provided enrollment audio; and the runtime stage, where the voice identity of the runtime audio is compared against the stored profiles. As technology advances, the speaker recognition system needs to be updated for better performance. However, if the stored user profiles are not updated accordingly, version mismatch will result in meaningless recognition results. In this paper, we describe different version control strategies for different types of speaker recognition systems, according to how they are deployed in the production environment. View details
    Preview abstract We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime. View details
    Preview abstract In this paper, we propose "personal VAD'', a system to detect the voice activity of a target speaker at the frame level. This system is useful for gating the inputs to a streaming speech recognition system, such that it only triggers for the target user, which helps reduce the computational cost and battery consumption. We achieve this by training a VAD-alike neural network which is conditioned on the target speaker embedding or the speaker verification score. For every frame, personal VAD outputs the scores for three classes: non-speech, target speaker speech, and non-target speaker speech. With our optimal setup, we are able to train a 130KB model that out-performs a baseline system where individually trained standard VAD and speaker recognition network are combined to perform the same task. View details
    Preview abstract In many scenarios of a language identification task, the user will specify a set of languages which he/she speaks from a large set of all languages. This setup usually happens before the real-time identification. We want to model such prior knowledge into the way we train our neural networks, by replacing the commonly used softmax loss function with a novel loss function named \emph{tuplemax loss}. For example, a language identification system launched in North America may have $95\%$ users only speaking up to two languages. Together with a sliding window LSTM inference approach, our language identification system achieves a $2.33$\% error rate, which is a relative $48.5$\% improvement over the $4.50\%$ error rate of standard softmax loss method. View details
    Preview abstract In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings; (2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals. View details
    Preview abstract We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation. View details
    Fully supervised speaker diarization
    Aonan Zhang
    Chong Wang
    John Paisley
    Zhenyao Zhu
    Arxiv, Arxiv (2018)
    Preview abstract In this paper, we propose a fully supervised speaker diarization approach, named unbounded interleaved-state recurrent neural networks (UIS-RNN). Given extracted speaker-discriminative embeddings (a.k.a. d-vectors) from input utterances, each individual speaker is modeled by a parameter-sharing RNN, while the RNN states for different speakers interleave in the time domain. This RNN is naturally integrated with a distance-dependent Chinese restaurant process (ddCRP) to accommodate an unknown number of speakers. Our system is fully supervised and we are able to learn from examples where timestamped speaker labels are annotated. We achieved a 7.6% diarization error rate on NIST SRE 2000 CALLHOME, which is better than the state-of-the-art method using spectral clustering. Moreover, our method decodes in an online fashion while most state-of-the-art systems rely on offline clustering. View details
    Preview abstract Attention-based models have recently shown great performance on a range of tasks, such as speech recognition, machine translation, and image captioning due to their ability to summarize relevant information that expands through the entire length of an input sequence. In this paper, we analyze the usage of attention mechanisms to the problem of sequence summarization in our end-to-end text-dependent speaker recognition system. We explore different topologies and their variants of the attention layer, and compare different pooling methods on the attention weights. Ultimately, we show that attention-based models can improves the Equal Error Rate (EER) of our speaker verification system by relatively 14% compared to our non-attention LSTM baseline model. View details
    Speaker Diarization with LSTM
    Carlton Downey
    Li Wan
    Philip Andrew Mansfield
    (2017)
    Preview abstract For many years, i-vector based speaker embedding techniques were the dominant approach for speaker verification and speaker diarization applications. However, mirroring the rise of deep learning in various domains, neural network based speaker embeddings, also known as d-vectors, have consistently demonstrated superior speaker verification performance. In this paper, we build on the success of d-vector based speaker verification systems to develop a new d-vector based approach to speaker diarization. Specifically, we combine LSTM-based d-vector audio embeddings with recent work in non-parametric clustering to obtain a state-of-the-art speaker diarization system. Our experiments on CALLHOME American English and 2003 NIST Rich Transcription conversational telephone speech (CTS) corpus suggest that d-vector based diarization systems offer significant advantages over traditional i-vector based systems. View details
    Wavenet based low rate speech coding
    W. Bastiaan Kleijn
    Alejandro Luebs
    Florian Stimberg
    Thomas C. Walters
    arXiv preprint arXiv:1712.01120 (2017)
    Preview abstract Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generative model and show that approximating the signal waveform incurs a large rate penalty. Our experiments confirm the high performance of the WaveNet based coder and show that the speech produced by the system is able to additionally perform implicit bandwidth extension and does not significantly impair recognition of the original speaker for the human listener, even when that speaker has not been used during the training of the generative model. View details
    Preview abstract In this paper, we propose a new loss function called generalized end-to-end (GE2E) loss, which makes the training of speaker verification models more efficient than our previous tuple-based end-to-end (TE2E) loss function. Unlike TE2E, the GE2E loss function updates the network in a way that emphasizes examples that are difficult to verify at each step of the training process. Additionally, the GE2E loss does not require an initial stage of example selection. With these properties, the model with new loss function learns a better model, by decreasing EER by more than 10%, in shorter period of time, by reducing the training time by >60%. We also introduce the MultiReader technique, which allow us do domain adaptation - training more accurate model that supports multiple keywords (i.e. "OK Google" and "Hey Google") as well as multiple dialects. View details
    No Results Found