Oriol Vinyals

Oriol Vinyals

Oriol Vinyals is a Principal Scientist at Google DeepMind, and a team lead of the Deep Learning group. His work focuses on Deep Learning and Artificial Intelligence. Prior to joining DeepMind, Oriol was part of the Google Brain team. He holds a Ph.D. in EECS from the University of California, Berkeley and is a recipient of the 2016 MIT TR35 innovator award. His research has been featured multiple times at the New York Times, Financial Times, WIRED, BBC, etc., and his articles have been cited over 70000 times. His academic involvement includes program chair for the International Conference on Learning Representations (ICLR) of 2017, and 2018. He has also been an area chair for many editions of the NeurIPS and ICML conferences. Some of his contributions such as seq2seq, knowledge distillation, or TensorFlow are used in Google Translate, Text-To-Speech, and Speech recognition, serving billions of queries every day, and he was the lead researcher of the AlphaStar project, creating an agent that defeated a top professional at the game of StarCraft, achieving Grandmaster level, also featured as the cover of Nature. At DeepMind he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, deep learning and reinforcement learning.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Emergent abilities of large language models
    Barret Zoph
    Colin Raffel
    Dani Yogatama
    Jason Wei
    Liam B. Fedus
    Maarten Paul Bosma
    Percy Liang
    Sebastian Borgeaud
    Tatsunori B. Hashimoto
    Yi Tay
    TMLR (2022)
    Preview abstract Scaling up language models has been shown to predictably confer a range of benefits such as improved performance and sample efficiency. This paper discusses an unpredictable phenomenon that we call emergent abilities of large language models. Such emergent abilities have close to random performance until evaluated on a model of sufficiently large scale, and hence their emergence cannot be predicted by extrapolating a scaling law based on small-scale models. The emergence of such abilities suggests that additional scaling could further expand the range of tasks that language models can perform. We discuss the implications of these phenomena and suggest directions for future research. View details
    Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
    Aditya Paliwal
    Felix Gimeno
    Vinod Gopal Nair
    Yujia Li
    Miles Lubin
    International Conference on Learning Representations (ICLR) (2020)
    Preview abstract We present a deep reinforcement learning approach to minimizing the execution cost of neural network computation graphs in an optimizing compiler. Unlike earlier learning-based works that require training the optimizer on the same graph to be optimized, we propose a learning approach that trains an optimizer offline and then generalizes to previously unseen graphs without further training. This allows our approach to produce high-quality execution decisions on real-world TensorFlow graphs in seconds instead of hours. We consider two optimization tasks for computation graphs: minimizing running time and peak memory usage. In comparison to an extensive set of baselines, our approach achieves significant improvements over classical and other learning-based methods on these two tasks. View details
    Pointer Graph Networks
    Matthew C. Overlan
    Razvan Pascanu
    Charles Blundell
    Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020) (2020) (to appear)
    Preview abstract Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model expressivity. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets. View details
    Preview abstract Due to the phenomenon of "posterior collapse," current latent variable generative models pose a challenging design choice that either weakens the capacity of the decoder or requires augmenting the objective so it does not only maximize the likelihood of the data. In this paper, we propose an alternative that utilizes the most powerful generative models as decoders, whilst optimising the variational lower bound all while ensuring that the latent variables preserve and encode useful information. Our proposed δ-VAEs achieve this by constraining the variational family for the posterior to have a minimum distance to the prior. For sequential latent variable models, our approach resembles the classic representation learning approach of slow feature analysis. We demonstrate the efficacy of our approach at modeling text on LM1B and modeling images: learning representations, improving sample quality, and achieving state of the art log-likelihood on CIFAR-10 and ImageNet 32×32. View details
    Universal Transformers
    Stephan Gouws
    Jakob Uszkoreit
    Lukasz Kaiser
    ICLR (2019)
    Preview abstract Recurrent neural networks (RNNs) sequentially process data by updating their state with each new data point, and have long been the de facto choice for sequence modeling tasks. However, their inherently sequential computation makes them slow to train. Feed-forward and convolutional architectures have recently been shown to achieve superior results on some sequence modeling tasks such as machine translation, with the added advantage that they concurrently process all inputs in the sequence, leading to easy parallelization and faster training times. Despite these successes, however, popular feed-forward sequence models like the Transformer fail to generalize in many simple tasks that recurrent models handle with ease, e.g. copying strings or even simple logical inference when the string or formula lengths exceed those observed at training time. We propose the Universal Transformer (UT), a parallel-in-time self-attentive recurrent sequence model which can be cast as a generalization of the Transformer model and which addresses these issues. UTs combine the parallelizability and global receptive field of feed-forward sequence models like the Transformer with the recurrent inductive bias of RNNs. We also add a dynamic per-position halting mechanism and find that it improves accuracy on several tasks. In contrast to the standard Transformer, under certain assumptions UTs can be shown to be Turing-complete. Our experiments show that UTs outperform standard Transformers on a wide range of algorithmic and language understanding tasks, including the challenging LAMBADA language modeling task where UTs achieve a new state of the art, and machine translation where UTs achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset. View details
    A Study on Overfitting in Deep Reinforcement Learning
    Chiyuan Zhang
    Remi Munos
    Samy Bengio
    arXiv (2018)
    Preview abstract Recent years have witnessed significant progresses in deep Reinforcement Learning (RL). Empowered with large scale neural networks, carefully designed architectures, novel training algorithms and massively parallel computing devices, researchers are able to attack many challenging RL problems. However, in machine learning, more training power comes with a potential risk of more overfitting. As deep RL techniques are being applied to critical problems such as healthcare and finance, it is important to understand the generalization behaviors of the trained agents. In this paper, we conduct a systematic study of standard RL agents and find that they could overfit in various ways. Moreover, overfitting could happen "robustly": commonly used techniques in RL that add stochasticity do not necessarily prevent or detect overfitting. In particular, the same agents and learning algorithms could have drastically different test performance, even when all of them achieve optimal rewards during training. The observations call for more principled and careful evaluation protocols in RL. We conclude with a general discussion on overfitting in RL and a study of the generalization behaviors from the perspective of inductive bias. View details
    Preview abstract Voice-activity-detection (VAD) is the task of predicting where in the utterance is speech versus background noise. It is an important first step to determine when to open the microphone (i.e., start-of- speech) and close the microphone (i.e., end-of-speech) for streaming speech recognition applications such as Voice Search. Long short- term memory neural networks (LSTMs) have been a popular archi- tecture for sequential modeling for acoustic signals, and have been successfully used for many VAD applications. However, it has been observed that LSTMs suffer from state saturation problems when the utterance is long (i.e., for voice dictation tasks), and thus requires the LSTM state to be periodically reset. In this paper, we propse an alter- native architecture that does not suffer from saturation problems by modeling temporal variations through a stateless dilated convolution neural network (CNN). The proposed architecture differs from con- ventional CNNs in three respects (1) dilated causal convolution, (2) gated activations and (3) residual connections. Results on a Google Voice Typing task shows that the proposed architecture achieves 14% rela- tive FA improvement at a FR of 1% over state-of-the-art LSTMs for VAD task. We also include detailed experiments investigating the factors that distinguish the proposed architecture from conventional convolution. View details
    Hierarchical Representations for Efficient Architecture Search
    Hanxiao Liu
    Karen Simonyan
    Chrisantha Fernando
    Koray Kavukcuoglu
    International Conference on Learning Representations (2018)
    Preview abstract We explore efficient neural architecture search methods and show that a simple yet powerful evolutionary algorithm can discover new architectures with excellent performance. Our approach combines a novel hierarchical genetic representation scheme that imitates the modularized design pattern commonly adopted by human experts, and an expressive search space that supports complex topologies. Our algorithm efficiently discovers architectures that outperform a large number of manually designed models for image classification, obtaining top-1 error of 3.6% on CIFAR-10 and 20.3% when transferred to ImageNet, which is competitive with the best existing neural architecture search approaches. We also present results using random search, achieving 0.3% less top-1 accuracy on CIFAR-10 and 0.1% less on ImageNet whilst reducing the search time from 36 hours down to 1 hour. View details
    Relational inductive biases, deep learning, and graph networks
    Peter Battaglia
    Jessica Blake Chandler Hamrick
    Victor Bapst
    Alvaro Sanchez
    Vinicius Zambaldi
    Mateusz Malinowski
    Andrea Tacchetti
    David Raposo
    Adam Santoro
    Ryan Faulkner
    Caglar Gulcehre
    Francis Song
    Andy Ballard
    Justin Gilmer
    Ashish Vaswani
    Kelsey Allen
    Charles Nash
    Victoria Jayne Langston
    Chris Dyer
    Nicolas Heess
    Daan Wierstra
    Matt Botvinick
    Yujia Li
    Razvan Pascanu
    arXiv (2018)
    Preview abstract The purpose of this paper is to explore relational inductive biases in modern AI, especially deep learning, describing a rough taxonomy of existing approaches, and introducing a common mathematical framework for expressing and unifying various approaches. The key theme running through this work is structure—how the world is structured, and how the structure of different computational strategies determines their strengths and weaknesses. View details
    Parallel WaveNet: Fast High-Fidelity Speech Synthesis
    Aäron van den Oord
    Yazhe Li
    Igor Babuschkin
    Karen Simonyan
    Koray Kavukcuoglu
    George van den Driessche
    Luis Carlos Cobo Rus
    Florian Stimberg
    Norman Casagrande
    Dominik Grewe
    Seb Noury
    Sander Dieleman
    Erich Elsen
    Nal Kalchbrenner
    Alexander Graves
    Helen King
    Thomas Walters
    Demis Hassabis
    NA, Google Deepmind, NA (2017)
    Preview abstract The recently-developed WaveNet architecture [27] is the current state of the art in realistic speech synthesis, consistently rated as more natural sounding for many different languages than any previous system. However, because WaveNet relies on sequential generation of one audio sample at a time, it is poorly suited to today’s massively parallel computers, and therefore hard to deploy in a real-time production setting. This paper introduces Probability Density Distillation, a new method for training a parallel feed-forward network from a trained WaveNet with no significant difference in quality. The resulting system is capable of generating high-fidelity speech samples at more than 20 times faster than real-time, and is deployed online by Google Assistant, including serving multiple English and Japanese voices. View details