Lucas Dixon

Lucas Dixon

Lucas is a principal research scientist in Google DeepMind and co-lead of PAIR (People and AI Research). He works on visualisation, interpretability and control of machine learning systems, and specifically language models. His work explores how people can productively and fairly benefit from machine learning systems.

Previously, he was Chief Scientist at Jigsaw where he founded engineering and research. He has contributed scientific advances and systems in multiple disciplines including digital security, formal logic, machine learning, and data visualization. For example he co-founded uProxy & Outline, Project Shield, DigitalAttackMap; Syria Defection Tracker, unfiltered.news, Conversation AI and Perspective API.

Before Google, Lucas completed his PhD and worked at the University of Edinburgh on the automation of mathematical reasoning and graphical languages applied to quantum information. He also helped run a non-profit working towards more rational and informed discussion and decision making, and was a co-founder of TheoryMine - a playful take on automating mathematical discovery. Outside of scientific advances, Lucas is also a martial arts instructor in Paris.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large Language Models
    Minsuk Kahng
    Michael Xieyang Liu
    Krystal Kallarackal
    Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24), ACM (2024)
    "We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
    Michael Xieyang Liu
    Frederick Liu
    Alex Fiannaca
    Terry Koo
    In Extended Abstract in ACM CHI Conference on Human Factors in Computing Systems (CHI EA '24), ACM (2024), pp. 9 (to appear)
    Sparsely Activated Language Models are Efficient In-Context Learners
    Barret Richard Zoph
    Dmitry (Dima) Lepikhin
    Emma Wang
    Kathy Meier-Hellstern
    Kun Zhang
    Liam B. Fedus
    Maarten Paul Bosma
    Marie Pellat
    Maxim Krikun
    Nan Du
    Simon Tong
    Tao Wang
    Toju Duke
    Yonghui Wu
    Yuanzhong Xu
    Zhifeng Chen
    Zongwei Zhou
    (2022)
    On Natural Language User Profiles for Transparent and Scrutable Recommendation
    Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '22) (2022)
    Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis
    Shayegan Omidshafiei
    Yannick Assogba
    Advances in Neural Information Processing Systems (NeurIPS) (2022) (to appear)
    Context Sensitivity Estimation in Toxicity Detection
    Alexandros Xenos
    Ioannis Pavlopoulos
    Ion Androutsopoulos
    First Monday (2022)
    Conversations Gone Awry: Detecting Warning Signs of Conversational Failure
    Justine Zhang
    Jonathan P. Chang
    Cristian Danescu-Niculescu-Mizil
    Dario Taraborelli
    Proceedings of ACL, ACM Digital Library (2018)