Jason Riesa
Research Areas
Authored Publications
Sort By
Multimodal Modeling for Spoken Language Identification
Shikhar Bharadwaj
Sriram (Sri) Ganapathy
Sid Dalmia
Wei Han
Yu Zhang
Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
Preview abstract
Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition.
View details
FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
Jan A. Botha
Xavier Garcia
Transactions of the Association for Computational Linguistics (2023)
Preview abstract
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
View details
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
Alexis Conneau
Simran Khanuja
Yu Zhang
Siddharth Dalmia
Clara Rivera
IEEE Spoken Language Technology Workshop (SLT) (2022)
Preview abstract
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding.
View details
Building Machine Translation Systems for the Next Thousand Languages
Julia Kreutzer
Mengmeng Niu
Pallavi Nikhil Baljekar
Xavier Garcia
Maxim Krikun
Pidong Wang
Apu Shah
Macduff Richard Hughes
Google Research (2022)
XTREME-S: Evaluating Cross-lingual Speech Representations
Clara E. Rivera
Mihir Sanjay Kale
Sebastian Ruder
Simran Khanuja
Ye Jia
Yu Zhang
Proc. Interspeech 2022
Preview abstract
We introduce \xtremes, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, retrieval and speech-to-text translation. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in ``universal'' speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. The code and pre-processing scripts will be made publicly available.\footnote{\small\url{https://huggingface.co/datasets/google/xtreme_s}}
View details
Preview abstract
State-of-the-art multilingual models depend on vocabularies that cover all of the languages the model will expect to see at inference time, but the standard methods for generating those vocabularies are not ideal for massively multilingual applications. In this work, we introduce a novel procedure for multilingual vocabulary generation that combines the separately trained vocabularies of several automatically derived language clusters, thus balancing the trade-off between cross-lingual subword sharing and language-specific vocabularies. Our experiments show improvements across languages on key multilingual benchmark tasks TyDi QA (+2.9 F1), XNLI (+2.1%), and WikiAnn NER (+2.8 F1) and factor of 8 reduction in out-of-vocabulary rate, all without increasing the size of the model or data.
View details
Evaluating the Cross-Lingual Effectiveness of Massively Multilingual Neural Machine Translation
Henry Tsai
Naveen Ari
AAAI 2020 (2020)
Preview abstract
Recently proposed Massively Multilingual Neural Machine Translation system has been shown to be capable of translating 102 languages to and from English within a single model. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of such a model on 5 downstream classification and sequence tagging tasks spanning more than 50 languages. We compare our results to a strong multilingual baseline, BERT and show modest gains on zero-shot cross-lingual transfer in 4 out of these 5 tasks. Our results provide strong insight into how applicable the representations learned from multilingual machine translation are, across languages and tasks.
View details
Preview abstract
We propose a practical scheme to train a single multilingual sequence labeling model that yields state of the art results and is small and fast enough to run on a single CPU. Starting from a public multilingual BERT checkpoint, our final model is 34x smaller and 15x faster, and has higher accuracy than a state-of-the-art multilingual baseline. We show that our model especially outperforms on low-resource languages, and works on codemixed input text without being explicitly trained on codemixed examples. And we show the effectiveness of our method by reporting on part-of-speech tagging and morphological prediction on 70 treebanks and 47 languages.
View details
Preview abstract
We address the problem of fine-grained multilingual language identification: providing a language code for every token in a sentence, including codemixed text containing multiple languages. Such text is increasingly prevalent online, in documents, social media, and message boards. In this paper, we show that a feed-forward network with a simple globally constrained decoder can accurately and rapidly label both codemixed and monolingual text in 100 languages and 100 language pairs. This model outperforms previously published multilingual approaches in terms of both accuracy and speed, yielding an 800x speed-up and a 19.2% averaged absolute gain on three codemixed datasets.
View details
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Mike Schuster
Mohammad Norouzi
Maxim Krikun
Qin Gao
Apurva Shah
Xiaobing Liu
Łukasz Kaiser
Stephan Gouws
Taku Kudo
Keith Stevens
George Kurian
Nishant Patil
Wei Wang
Jason Smith
Alex Rudnick
Macduff Hughes
CoRR, abs/1609.08144 (2016)
Preview abstract
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using attention and residual connections. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units ("wordpieces") for both input and output. This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
View details