Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation
    Nitesh Bharadwaj Gundavarapu
    Luca Versari
    Kihyuk Sohn
    Agrim Gupta
    Xiuye Gu
    Alex Hauptmann
    Boqing Gong
    Lu Jiang
    ICLR (2024)
    Preview abstract While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks. View details
    VideoPoet: A Large Language Model for Zero-Shot Video Generation
    Dan Kondratyuk
    Xiuye Gu
    Jonathan Huang
    Grant Schindler
    Rachel Hornung
    Vighnesh Birodkar
    Jimmy Yan
    Ming-Chang Chiu
    Hassan Akbari
    Josh Dillon
    Agrim Gupta
    Meera Hahn
    Anja Hauth
    David Hendon
    Alonso Martinez
    Kihyuk Sohn
    Xuan Yang
    Huisheng Wang
    Lu Jiang
    ICML (2024)
    Preview abstract We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/ View details
    Preview abstract We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of 512*896 resolution at 8 frames per second. View details
    Preview abstract Presentation slides commonly use visual patterns for structural navigation, such as titles, dividers, and build slides. However, screen readers do not capture such intention, making it time-consuming and less accessible for blind and visually impaired (BVI) users to linearly consume slides with repeated content. We present Slide Gestalt, an automatic approach that identifies the hierarchical structure in a slide deck. Slide Gestalt computes the visual and textual correspondences between slides to generate hierarchical groupings. Readers can navigate the slide deck from the higher-level section overview to the lower-level description of a slide group or individual elements interactively with our UI. We derived side consumption and authoring practices from interviews with BVI readers and sighted creators and an analysis of 100 decks. We performed our pipeline with 50 real-world slide decks and a large dataset. Feedback from eight BVI participants showed that Slide Gestalt helped navigate a slide deck by anchoring content more efficiently, compared to using accessible slides. View details
    Preview abstract Recent conditional image generation methods produce images of remarkable diversity, fidelity and realism. However, the majority of these methods allow conditioning only on labels or text prompts, which limits their level of control over the generation result. In this paper, we introduce MaskSketch, a masked image generation method that allows spatial conditioning of the generation result, using a guiding sketch as an extra conditioning signal during sampling. MaskSketch utilizes a pre-trained masked image generator, requires no model training or paired supervision, and works with input sketches of different levels of abstraction. We propose a novel parallel sampling scheme that leverages the structural information encoded in the intermediate self-attention maps of a masked generative transformer, such as scene layout and object shape. Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure. Evaluated on standard benchmark datasets, MaskSketch outperforms state-of-the-art methods for sketch-to-image translation, as well as generic image-to-image translation approaches. View details
    Preview abstract In this work, we introduce Semantic Pyramid AutoEncoder (SPAE) for enabling frozen LLMs to perform both understanding and generation tasks involving non-linguistic modalities such as images or videos. SPAE converts between raw pixels and interpretable lexical tokens (or words) extracted from the LLM's vocabulary. The resulting tokens capture both the semantic meaning and the fine-grained details needed for visual reconstruction, effectively translating the visual content into a language comprehensible to the LLM, and empowering it to perform a wide array of multimodal tasks. Our approach is validated through in-context learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image understanding and generation tasks. Our method marks the first successful attempt to enable a frozen LLM to generate image content while surpassing state-of-the-art performance in image understanding tasks, under the same setting, by over 25%. View details
    Preview abstract This paper studies non-autoregressive transformers for the image synthesis task from the lens of discrete diffusion models. We find that generative methods based on non-autoregressive transformers suffer from decoding compounding error due to the parallel sampling of visual tokens. To alleviate it, we introduce discrete predictor-corrector diffusion models (DPC). Predictor-corrector samplers are a recently introduced class of samplers for diffusion models which improve upon ancestral samplers by correcting the sampling distribution of intermediate diffusion states using MCMC methods. In DPC, the Langevin corrector, which does not have a direct counterpart in discrete space, is replaced with a discrete MCMC transition defined by a learned corrector kernel. The corrector kernel is trained to make the correction steps achieve asymptotic convergence, in distribution, to the real marginal of the intermediate diffusion states. Our experiments show that equipped with DPC, discrete diffusion models can achieve comparable quality to continuous diffusion models, while having orders of magnitude faster sampling times. DPC improves upon existing discrete latent space models for class-conditional image generation on ImageNet, and outperforms recent diffusion models and GANs, according to visual evaluation user studies. View details
    Visual Prompt Tuning for Generative Transfer Learning
    Kihyuk Sohn
    Huiwen Chang
    Luisa Polania
    Han Zhang
    Lu Jiang
    CVPR 2023 (2023)
    Preview abstract Transferring knowledge from an image synthesis model trained on a large dataset is a promising direction for learning generative image models from various domains efficiently. While previous works have studied GAN models, we present a recipe for learning vision transformers by generative knowledge transfer. We base our framework on state-of-the-art generative vision transformers that represent an image as a sequence of visual tokens to the autoregressive or non-autoregressive transformers. To adapt to a new domain, we employ prompt tuning, which prepends learnable tokens called prompt to the image token sequence, and introduce a new prompt design for our task. We study on a variety of visual domains, including visual task adaptation benchmark, with varying amount of training images, and show effectiveness of knowledge transfer and a significantly better image generation quality over existing works. View details
    Preview abstract This paper introduces a Masked Generative Video Transformer, named MAGVIT, for multi-task video generation. We train a single MAGVIT model and apply it to multiple video generation tasks at inference time. To this end, two new designs are proposed: an improved 3D tokenizer model to quantize a video into spatial-temporal visual tokens, and a novel technique to embed conditions inside the mask to facilitate multi-task training. We conduct extensive experiments to demonstrate the compelling quality, efficiency, and flexibility of the proposed model. First, MAGVIT radically improves the previous best fidelity on two video generation tasks. In terms of efficiency, MAGVIT offers leading video generation speed at inference time, which is estimated to be one or two orders-of-magnitudes faster than other models. As for flexibility, we verified that a single trained MAGVIT is able to generically perform 8+ tasks at several video benchmarks from drastically different visual domains. We will open source our framework and models. View details
    Sharing Decoders: Network Fission for Multi-task Pixel Prediction
    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, IEEE/CVF (2022), pp. 3771-3780
    Preview abstract We examine the benefits of splitting encoder-decoders for multitask learning and showcase results on three tasks (semantics, surface normals, and depth) while adding very few FLOPS per task. Current hard parameter sharing methods for multi-task pixel-wise labeling use one shared encoder with separate decoders for each task. We generalize this notion and term the splitting of encoder-decoder architectures at different points as fission. Our ablation studies on fission show that sharing most of the decoder layers in multi-task encoder-decoder networks results in improvement while adding far fewer parameters per task. Our proposed method trains faster, uses less memory, results in better accuracy, and uses significantly fewer floating point operations (FLOPS) than conventional multi-task methods, with additional tasks only requiring 0.017% more FLOPS than the single-task network. View details