Haim Kaplan

Haim Kaplan

I work on data structures, algorithms, computational geometry and machine learning. Right now my main focus is on online learning, reinforcement learning, and clustering. Typically my research is theoretical. I am also a faculty at the school of computer science of Tel Aviv University.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffle model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model. Specifically, we give a summation algorithm with error $\Tilde{O}(n^{1/(2k+1)})$ with $k$ concurrent shufflers on a sequence of length $n$. Furthermore, we prove that this bound is tight for any $k$, even if the algorithm can choose the sizes of the batches adaptively. For $k=\log n$ shufflers, the resulting error is polylogarithmic, much better than $\Tilde{\Theta}(n^{1/3})$ which we show is the smallest possible with a single shuffler. We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal $\Tilde{O}(\sqrt{n})$ regret with $k= \Tilde{\Omega}(\log n)$ concurrent shufflers. View details
    Preview abstract In this work we revisit an interactive variant of joint differential privacy, recently introduced by Naor et al. [2023], and generalize it towards handling online processes in which existing privacy definitions seem too restrictive. We study basic properties of this definition and demonstrate that it satisfies (suitable variants) of group privacy, composition, and post processing. In order to demonstrate the advantages of this privacy definition compared to traditional forms of differential privacy, we consider the basic setting of online classification. We show that any (possibly non-private) learning rule can be effectively transformed to a private learning rule with only a polynomial overhead in the mistake bound. This demonstrates a stark difference with traditional forms of differential privacy, such as the one studied by Golowich and Livni [2021], where only a double exponential overhead in the mistake bound is known (via an information theoretic upper bound). View details
    Preview abstract Differentially private algorithms for common metric aggregation tasks, such as clustering or averaging, often have limited practicality due to their complexity or to the large number of data points that is required for accurate results. We propose a simple and practical tool $\mathsf{FriendlyCore}$ that takes a set of points $\cD$ from an unrestricted (pseudo) metric space as input. When $\cD$ has effective diameter $r$, $\mathsf{FriendlyCore}$ returns a ``stable'' subset $\cC \subseteq \cD$ that includes all points, except possibly few outliers, and is {\em guaranteed} to have diameter $r$. $\mathsf{FriendlyCore}$ can be used to preprocess the input before privately aggregating it, potentially simplifying the aggregation or boosting its accuracy. Surprisingly, $\mathsf{FriendlyCore}$ is light-weight with no dependence on the dimension. We empirically demonstrate its advantages in boosting the accuracy of mean estimation and clustering tasks such as $k$-means and $k$-GMM, outperforming tailored methods. View details
    Preview abstract A dynamic algorithm against an adaptive adversary is required to be correct when the adversary chooses the next update after seeing the previous outputs of the algorithm. We obtain faster dynamic algorithms against an adaptive adversary and separation results between what is achievable in the oblivious vs. adaptive settings. To get these results we exploit techniques from differential privacy, cryptography, and adaptive data analysis. We give a general reduction transforming a dynamic algorithm against an oblivious adversary to a dynamic algorithm robust against an adaptive adversary. This reduction maintains several copies of the oblivious algorithm and uses differential privacy to protect their random bits. Using this reduction we obtain dynamic algorithms against an adaptive adversary with improved update and query times for global minimum cut, all pairs distances, and all pairs effective resistance. We further improve our update and query times by showing how to maintain a sparsifier over an expander decomposition that can be refreshed fast. This fast refresh enables it to be robust against what we call a blinking adversary that can observe the output of the algorithm only following refreshes. We believe that these techniques will prove useful for additional problems. On the flip side, we specify dynamic problems that, assuming a random oracle, every dynamic algorithm that solves them against an adaptive adversary must be polynomially slower than a rather straightforward dynamic algorithm that solves them against an oblivious adversary. We first show a separation result for a search problem and then show a separation result for an estimation problem. In the latter case our separation result draws from lower bounds in adaptive data analysis. View details
    Preview abstract In this work we study the problem of differentially private (DP) quantiles, in which given data $X$ set and quantiles $q_1, ..., q_m \in [0,1]$, we want to output $m$ quantile estimations such that the estimation is as close as possible to the optimal solution and preserves DP. In this work we provide \algoname~(AQ), an algorithm and implementation for the DP-quantiels problem. We analyze our algorithm and provide a mathematical proof of its error bounds for the general case and for the concrete case of uniform quantiles utility. We also experimentally evaluate \algoref~and conclude that it obtains higher accuracy than the existing baselines while having lower run time. We reduce the problem of DP-data-sanitization to the DP-uniform-quantiles problem and analyze the resulting mathematical bounds for the error in this case. We analyze our algorithm under the definition of zero Concentrated Differential Privacy (zCDP), and supply the error guarantees of our \algoref~in this case. Finally, we show the empirical benefit our algorithm gains under the zCDP definition. View details
    Preview abstract The amount of training-data is one of the key factors which determines the generalization capacity of learning algorithms. Intuitively, one expects the error rate to decrease as the amount of training-data increases. Perhaps surprisingly, natural attempts to formalize this intuition give rise to interesting and challenging mathematical questions. For example, in their classical book on pattern recognition, Devroye, Gyorfi, and Lugosi (1996) ask whether there exists a monotone Bayes-consistent algorithm. This question remained open for over 25 years, until recently Pestov (2021) resolved it for binary classification, using an intricate construction of a monotone Bayes-consistent algorithm. We derive a general result in multiclass classification, showing that every learning algorithm A can be transformed to a monotone one with similar performance. Further, the transformation is efficient and only uses a black-box oracle access to A. This demonstrates that one can provably avoid non-monotonic behaviour without compromising performance, thus answering questions asked by Devroye, Gyorfi, and Lugosi (1996), Viering, Mey, and Loog (2019), Viering and Loog (2021), and by Mhammedi (2021). Our general transformation readily implies monotone learners in a variety of contexts: for example, Pestov’s result follows by applying it on any Bayes-consistent algorithm (e.g., k-Nearest-Neighbours). In fact, our transformation extends Pestov’s result to classification tasks with an arbitrary number of labels. This is in contrast with Pestov’s work which is tailored to binary classification. In addition, we provide uniform bounds on the error of the monotone algorithm. This makes our transformation applicable in distribution-free settings. For example, in PAC learning it implies that every learnable class admits a monotone PAC learner. This resolves questions asked by Viering, Mey, and Loog (2019); Viering and Loog (2021); Mhammedi (2021). View details
    Preview abstract We present differentially private efficient algorithms for learning polygons in the plane (which are not necessarily convex). Our algorithm achieves $(\alpha,\beta)$-PAC learning and $(\eps,\delta)$-differential privacy using a sample of size $O\left(\frac{k}{\alpha\eps}\log\left(\frac{|X|}{\beta\delta}\right)\right)$, where the domain is $X\times X$ and $k$ is the number of edges in the (potentially non-convex) polygon. View details
    Preview abstract A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary. We establish a connection between adversarial robustness of streaming algorithms and the notion of differential privacy. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters. View details
    Preview abstract We present efficient differentially private algorithms for learning unions of polygons in the plane (which are not necessarily convex). Our algorithms are $(\alpha,\beta)$--probably approximately correct and $(\varepsilon,\delta)$--differentially private using a sample of size $\tilde{O}\left(\frac{1}{\alpha\varepsilon}k\log d\right)$, where the domain is $[d]\times[d]$ and $k$ is the number of edges in the union of polygons. Our algorithms are obtained by designing a private variant of the classical (nonprivate) learner for conjunctions using the greedy algorithm for set cover. View details
    Differentially-Private Bayes Consistency
    Aryeh Kontorovich
    Shay Moran
    Menachem Sadigurschi
    Archive, Archive, Archive
    Preview abstract We construct a universally Bayes consistent learning rule which satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labelled} sample complexity of $\tilde O(d/\eps)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution). View details