H. Brendan McMahan
Authored Publications
Sort By
Preview abstract
The state-of-the-art for training on-device language models for mobile keyboard applications combines federated learning (FL) with differential privacy (DP) via the DP-Follow-the-Regularized-Leader (DP-FTRL) algorithm. Two variants of DP-FTRL are used in practice, tree aggregation and matrix factorization. However, tree aggregation suffers from significantly suboptimal privacy/utility tradeoffs, while matrix mechanisms require expensive optimization parameterized by hard-to-estimate-in-advance constants, and high runtime memory costs.This paper extends the recently introduced Buffered Linear Toeplitz (BLT) mechanism to multi-participation scenarios. Our BLT-DP-FTRL maintains the ease-of-use advantages of tree aggregation, while essentially matching matrix factorization in terms of utility and privacy. We evaluate BLT-DP-FTRL on the StackOverflow dataset, serving as a re-producible simulation benchmark, and across four on-device language model tasks in a production FL system. Our empirical results highlight the advantages of the BLT mechanism and elevate the practicality and effectiveness of DP in real-world scenarios.
View details
Federated Learning of Gboard Language Models with Differential Privacy
Yanxiang Zhang
Galen Andrew
Jesse Rosenstock
Yuanbo Zhang
ACL industry track (2023) (to appear)
Preview abstract
We train language models (LMs) with federated learning (FL) and differential privacy (DP) in the Google Keyboard (Gboard). We apply the DP-Follow-the-Regularized-Leader (DP-FTRL)~\citep{kairouz21b} algorithm to achieve meaningfully formal DP guarantees without requiring uniform sampling of client devices.
To provide favorable privacy-utility trade-offs, we introduce a new client participation criterion and discuss the implication of its configuration in large scale systems. We show how quantile-based clip estimation~\citep{andrew2019differentially} can be combined with DP-FTRL to adaptively choose the clip norm during training or reduce the hyperparameter tuning in preparation for training.
With the help of pretraining on public data, we train and deploy more than twenty Gboard LMs that achieve high utility and $\rho-$zCDP privacy guarantees with $\rho \in (0.2, 2)$, with two models additionally trained with secure aggregation~\citep{bonawitz2017practical}.
We are happy to announce that all the next word prediction neural network LMs in Gboard now have DP guarantees, and all future launches of Gboard neural network LMs will require DP guarantees.
We summarize our experience and provide concrete suggestions on DP training for practitioners.
View details
Learning to Generate Image Embeddings with User-level Differential Privacy
Maxwell D. Collins
Yuxiao Wang
Sewoong Oh
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023) (to appear)
Preview abstract
We consider training feature extractors with user-level differential privacy to map images to embeddings from large-scale supervised data. To achieve user-level differential privacy, federated learning algorithms are extended and applied to aggregate user partitioned data, together with sensitivity control and noise addition. We demonstrate a variant of federated learning algorithm with partial aggregation and private reconstruction can achieve strong privacy utility trade-offs. When a large scale dataset is provided, it is possible to train feature extractors with both strong utility and privacy guarantees by combining techniques such as public pretraining, virtual clients, and partial aggregation.
View details
Preview abstract
Building privacy-preserving systems for machine learning and data science on decentralized data
View details
A Field Guide to Federated Optimization
Jianyu Wang
Gauri Joshi
Maruan Al-Shedivat
Galen Andrew
A. Salman Avestimehr
Katharine Daly
Deepesh Data
Suhas Diggavi
Hubert Eichner
Advait Gadhikar
Antonious M. Girgis
Filip Hanzely
Chaoyang He
Samuel Horvath
Martin Jaggi
Tara Javidi
Satyen Chandrakant Kale
Sai Praneeth Karimireddy
Jakub Konečný
Sanmi Koyejo
Tian Li
Peter Richtarik
Karan Singhal
Virginia Smith
Mahdi Soltanolkotabi
Weikang Song
Sebastian Stich
Ameet Talwalkar
Hongyi Wang
Blake Woodworth
Honglin Yuan
Mi Zhang
Tong Zhang
Chunxiang (Jake) Zheng
Chen Zhu
arxiv (2021)
Preview abstract
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compatibility with privacy and system requirements, and other constraints that are not primary considerations in other problem settings. This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms through concrete examples and practical implementation, with a focus on conducting effective simulations to infer real-world performance. The goal of this work is not to survey the current literature, but to inspire researchers and practitioners to design federated learning algorithms that can be used in various practical applications.
View details
Practical and Private (Deep) Learning without Sampling or Shuffling
Preview
Om Thakkar
Abhradeep Thakurta
38th International Conference on Machine Learning (ICML 2021) (2021) (to appear)
Adaptive Federated Optimization
Jakub Konečný
(2021)
Preview abstract
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Due to the heterogeneity of the client datasets, standard federated optimization methods such as Federated Averaging (FedAvg) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including Adagrad, Yogi and Adam, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can improve the performance of federated learning.
View details
Generative Models for Effective ML on Private, Decentralized Datasets
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net
Preview abstract
To improve real-world applications of machine learning, experienced modelers develop intuition about their datasets, their models, and how the two interact. Manual inspection of raw data—of representative samples, of outliers, of misclassifications—is an essential tool in a) identifying and fixing problems in the data, b) generating new modeling hypotheses, and c) assigning or refining human-provided labels. However, manual data inspection is risky for privacy-sensitive datasets, such as those representing the behavior of real-world individuals. Furthermore, manual data inspection is impossible in the increasingly important setting of federated learning, where raw examples are stored at the edge and the modeler may only access aggregated outputs such as metrics or model parameters. This paper demonstrates that generative models—trained using federated methods and with formal differential privacy guarantees—can be used effectively to debug data issues even when the data cannot be directly inspected. We explore these methods in applications to text with differentially private federated RNNs and to images using a novel algorithm for differentially private federated GANs.
View details
Training Production Language Models without Memorizing User Data
Om Thakkar
Galen Andrew
(2020)
Preview abstract
This paper presents the first consumer-scale next-word prediction (NWP) model trained with Federated Learning (FL) while leveraging the Differentially Private Federated Averaging (DP-FedAvg) technique. There has been prior work on building practical FL infrastructure, including work demonstrating the feasibility of training language models on mobile devices using such infrastructure. It has also been shown (in simulations on a public corpus) that it is possible to train NWP models with user-level differential privacy using the DP-FedAvg algorithm. Nevertheless, training production-quality NWP models with DP-FedAvg in a real-world production environment on a heterogeneous fleet of mobile phones requires addressing numerous challenges. For instance, the coordinating central server has to keep track of the devices available at the start of each round and sample devices uniformly at random from them, while ensuring \emph{secrecy of the sample}, etc. Unlike all prior privacy-focused FL work of which we are aware, for the first time we demonstrate the deployment of a differentially private mechanism for the training of a production neural network in FL, as well as the instrumentation of the production training infrastructure to perform an end-to-end empirical measurement of unintended memorization.
View details
Privacy Amplification via Random Check-Ins
Borja Balle
Om Thakkar
Abhradeep Thakurta
Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020
Preview abstract
Differentially Private Stochastic Gradient Descent (DP-SGD) forms a fundamental building block in many applications for learning over sensitive data. Two standard approaches, privacy amplification by subsampling, and privacy amplification by shuffling, permit adding lower noise in DP-SGD than via na\"{\i}ve schemes. A key assumption in both these approaches is that the elements in the data set can be uniformly sampled, or be uniformly permuted --- constraints that may become prohibitive when the data is processed in a decentralized or distributed fashion. In this paper, we focus on conducting iterative methods like DP-SGD in the setting of federated learning (FL) wherein the data is distributed among many devices (clients). Our main contribution is the random check-in distributed protocol, which crucially relies only on randomized participation decisions made locally and independently by each client. It has privacy/accuracy trade-offs similar to privacy amplification by subsampling/shuffling. However, our method does not require server-initiated communication, or even knowledge of the population size. To our knowledge, this is the first privacy amplification tailored for a distributed learning framework, and it may have broader applicability beyond FL. Along the way, we extend privacy amplification by shuffling to incorporate $(\epsilon,\delta)$-DP local randomizers, and exponentially improve its guarantees. In practical regimes, this improvement allows for similar privacy and utility using data from an order of magnitude fewer users.
View details