Aravindh Mahendran

Aravindh Mahendran

I do computer vision and machine learning research at Google Berlin. I am part of the Brain team. I work on self-supervised learning of visual representations. In the past I also worked on visualizing convolutional neural networks. I did my PhD under the supervision of Prof. Andrea Vedaldi at the Visual Geometry Group, University of Oxford. Prior to that I did a MSc in Robotics at Carnegie Mellon University and a B. Tech in Computer Science at IIIT Hyderabad.

Research Areas

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Google
Invariant Slot Attention: Object Discovery with Slot-Centric Reference Frames
Ondrej Biza
Gamaleldin Elsayed
Thomas Kipf
International Conference on Machine Learning (2023), pp. 2507-2527
Scaling Vision Transformers to 22 Billion Parameters
Josip Djolonga
Basil Mustafa
Piotr Padlewski
Justin Gilmer
Mathilde Caron
Rodolphe Jenatton
Lucas Beyer
Michael Tschannen
Anurag Arnab
Carlos Riquelme
Matthias Minderer
Gamaleldin Elsayed
Fisher Yu
Avital Oliver
Fantine Huot
Mark Collier
Vighnesh Birodkar
Yi Tay
Alexander Kolesnikov
Filip Pavetić
Thomas Kipf
Xiaohua Zhai
Neil Houlsby
Arxiv (2023)
Conditional Object-Centric Learning from Video
Thomas Kipf
Gamaleldin Fathy Elsayed
Austin Stone
Rico Jonschkowski
Alexey Dosovitskiy
Klaus Greff
ICLR, ICLR (2022)
SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos
Gamaleldin Fathy Elsayed
Klaus Greff
Michael Mozer
Thomas Kipf
Advances in Neural Information Processing Systems (2022), pp. 28940-28954
Object Scene Representation Transformer
Filip Pavetić
Leonidas Guibas
Klaus Greff
Thomas Kipf
Advances in Neural Information Processing Systems (2022), pp. 9512-9524
Simple Open-Vocabulary Object Detection with Vision Transformers
Matthias Minderer
Austin Stone
Maxim Neumann
Dirk Weissenborn
Alexey Dosovitskiy
Anurag Arnab
Zhuoran Shen
Xiaohua Zhai
Thomas Kipf
Neil Houlsby
ECCV (Poster) (2022)
Differentiable Patch Selection for Image Recognition
Jean-Baptiste Cordonnier
Alexey Dosovitskiy
Dirk Weissenborn
Jakob Uszkoreit
Thomas Unterthiner
CVPR (2021) (to appear)
Self-Supervised Learning of Video-Induced Visual Invariances
Michael Tobias Tschannen
Josip Djolonga
Neil Houlsby
Sylvain Gelly
Conference on Computer Vision and Pattern Recognition (2020)