
Andrew M. Dai
Andrew is a software engineer at Google. Prior to that he completed a PhD in machine learning at the University of Edinburgh and a MA in computer science at the University of Cambridge.
Research Areas
Authored Publications
Sort By
Google
MaMMUT: A Simple Vision-Encoder Text-Decoder Architecture for MultiModal Tasks
Wei Li
Abhijit Ogale
Luowei Zhou
Zhifeng Chen
Transactions on Machine Learning Research (2023)
Sparsely Activated Language Models are Efficient In-Context Learners
Barret Richard Zoph
Dmitry (Dima) Lepikhin
Emma Wang
Kathy Meier-Hellstern
Kun Zhang
Liam B. Fedus
Maarten Paul Bosma
Marie Pellat
Maxim Krikun
Nan Du
Simon Tong
Tao Wang
Toju Duke
Yonghui Wu
Yuanzhong Xu
Zhifeng Chen
Zongwei Zhou
(2022)
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Hyung Won Chung
Sebastian Gehrmann
Parker Schuh
Sasha Tsvyashchenko
Abhishek Rao
Yi Tay
Noam Shazeer
Nan Du
Reiner Pope
James Bradbury
Guy Gur-Ari
Toju Duke
Henryk Michalewski
Xavier Garcia
Liam Fedus
David Luan
Barret Zoph
Ryan Sepassi
David Dohan
Shivani Agrawal
Mark Omernick
Marie Pellat
Aitor Lewkowycz
Erica Moreira
Rewon Child
Oleksandr Polozov
Zongwei Zhou
Brennan Saeta
Michele Catasta
Jason Wei
Kathy Meier-Hellstern
arxiv:2204.02311 (2022)
Mind's Eye: Grounded Language Model Reasoning through Simulation
Jason Wei
Shixiang Shane Gu
Soroush Vosoughi
ICLR 2023 (2022)
Finetuned Language Models are Zero-Shot Learners
Jason Wei
Maarten Paul Bosma
Vincent Zhao
Nan Du
International Conference on Learning Representations (2022)
Impacts of social distancing policies on mobility and COVID-19 case growth in the US
Gregory Alexander Wellenius
Swapnil Suresh Vispute
Valeria Espinosa
Thomas Tsai
Jonathan Hennessy
Krishna Kumar Gadepalli
Adam Boulanger
Adam Pearce
Chaitanya Kamath
Arran Schlosberg
Catherine Bendebury
Chinmoy Mandayam
Charlotte Stanton
Shailesh Bavadekar
Christopher David Pluntke
Damien Desfontaines
Benjamin H. Jacobson
Zan Armstrong
Katherine Chou
Andrew Nathaniel Oplinger
Ashish K. Jha
Evgeniy Gabrilovich
Nature Communications (2021)
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
International Conference on Learning Representations (2021)
Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
Edward Choi
Zhen Xu
Yujia Li
Gerardo Flores
Association for the Advancement of Artificial Intelligence (AAAI) (2020)
Google COVID-19 Search Trends Symptoms Dataset: Anonymization Process Description
Akim Kumok
Chaitanya Kamath
Charlotte Stanton
Damien Desfontaines
Evgeniy Gabrilovich
Gerardo Flores
Gregory Alexander Wellenius
Ilya Eckstein
John S. Davis
Katie Everett
Krishna Kumar Gadepalli
Rayman Huang
Shailesh Bavadekar
Thomas Ludwig Roessler
Venky Ramachandran
Yael Mayer
Arxiv.org, N/A (2020)
Analyzing the Role of Model Uncertainty for Electronic Health Records
Edward Choi
Jeremy Nixon
Ghassen Jerfel
ACM Conference on Health, Inference, and Learning (ACM CHIL) (2020)