
Pooja Rao
Pooja is a research scientist within Google's Health AI group.
Research Areas
Authored Publications
Sort By
UWB Radar-based Heart Rate Monitoring: A Transfer Learning Approach
Elzbieta Gruzewska
Sebastien Baur
Matthew Baugh
Sharanya Srinivas
Matthew Thompson
Pramod Rudrapatna
Michael A. Sanchez
Lawrence Z. Cai
Timothy JA Chico
Robert F Storey
Emily Maz
Umesh Telang
Shravya Shetty
Mayank Daswani
arXiv (2025)
Preview abstract
Radar technology presents untapped potential for continuous, contactless, and passive heart rate monitoring via consumer electronics like mobile phones. However the variety of available radar systems and lack of standardization means that a large new paired dataset collection is required for each radar system. This study demonstrates transfer learning between frequency-modulated continuous wave (FMCW) and impulse-radio ultra-wideband (IR-UWB) radar systems, both increasingly integrated into consumer devices. FMCW radar utilizes a continuous chirp, while IR-UWB radar employs short pulses. Our mm-wave FMCW radar operated at 60 GHz with a 5.5 GHz bandwidth (2.7 cm resolution, 3 receiving antennas [Rx]), and our IR-UWB radar at 8 GHz with a 500 MHz bandwidth (30 cm resolution, 2 Rx). Using a novel 2D+1D ResNet architecture we achieved a mean absolute error (MAE) of 0.85 bpm and a mean absolute percentage error (MAPE) of 1.42% for heart rate monitoring with FMCW radar (N=119 participants, an average of 8 hours per participant). This model maintained performance (under 5 MAE/10% MAPE) across various body positions and heart rate ranges, with a 98.9% recall. We then fine-tuned a variant of this model, trained on single-antenna and single-range bin FMCW data, using a small (N=376, avg 6 minutes per participant) IR-UWB dataset. This transfer learning approach yielded a model with MAE 4.1 bpm and MAPE 6.3% (97.5% recall), a 25% MAE reduction over the IR-UWB baseline. This demonstration of transfer learning between radar systems for heart rate monitoring has the potential to accelerate its introduction into existing consumer devices.
View details
Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
Abbi Ward
Jimmy Li
Julie Wang
Sriram Lakshminarasimhan
Ashley Carrick
Jay Hartford
Pradeep Kumar S
Sunny Virmani
Renee Wong
Margaret Ann Smith
Dawn Siegel
Steven Lin
Justin Ko
JAMA Network Open (2024)
Preview abstract
Importance: Health datasets from clinical sources do not reflect the breadth and diversity of disease, impacting research, medical education, and artificial intelligence tool development. Assessments of novel crowdsourcing methods to create health datasets are needed.
Objective: To evaluate if web search advertisements (ads) are effective at creating a diverse and representative dermatology image dataset.
Design, Setting, and Participants: This prospective observational survey study, conducted from March to November 2023, used Google Search ads to invite internet users in the US to contribute images of dermatology conditions with demographic and symptom information to the Skin Condition Image Network (SCIN) open access dataset. Ads were displayed against dermatology-related search queries on mobile devices, inviting contributions from adults after a digital informed consent process. Contributions were filtered for image safety and measures were taken to protect privacy. Data analysis occurred January to February 2024.
Exposure: Dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and estimated Monk Skin Tone (eMST) labels.
Main Outcomes and Measures: The primary metrics of interest were the number, quality, demographic diversity, and distribution of clinical conditions in the crowdsourced contributions. Spearman rank order correlation was used for all correlation analyses, and the χ2 test was used to analyze differences between SCIN contributor demographics and the US census.
Results: In total, 5749 submissions were received, with a median of 22 (14-30) per day. Of these, 5631 (97.9%) were genuine images of dermatological conditions. Among contributors with self-reported demographic information, female contributors (1732 of 2596 contributors [66.7%]) and younger contributors (1329 of 2556 contributors [52.0%] aged <40 years) had a higher representation in the dataset compared with the US population. Of 2614 contributors who reported race and ethnicity, 852 (32.6%) reported a racial or ethnic identity other than White. Dermatologist confidence in assigning a differential diagnosis increased with the number of self-reported demographic and skin-condition–related variables (Spearman R = 0.1537; P < .001). Of 4019 contributions reporting duration since onset, 2170 (54.0%) reported onset within less than 7 days of submission. Of the 2835 contributions that could be assigned a dermatological differential diagnosis, 2523 (89.0%) were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset.
Conclusions and Relevance: The findings of this survey study suggest that search ads are effective at crowdsourcing dermatology images and could therefore be a useful method to create health datasets. The SCIN dataset bridges important gaps in the availability of images of common, short-duration skin conditions.
View details