Yinlam Chow

Yinlam Chow is a research scientist at Google Research. Prior to Google, he was a research scientist at DeepMind (from 2017 to 2019) and a research scientist at Osaro, Inc (from 2016 to 2017). He received a Ph.D. from Stanford Institute of Computational and Mathematical Engineering (ICME) in 2017. He has published over 30 papers in major machine learning and control journals and conferences. His research focuses have been on deriving algorithms for risk-sensitive, safe, robust control, sequential decision making, and (model-based and model-free) reinforcement learning, with applications to problems in robotics, power systems, and personalized recommendation.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing large language models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs. View details
    Discovering Personalized Semantics for Soft Attributes in Recommender Systems using Concept Activation Vectors
    Christina Göpfert
    Alex Haig
    Ivan Vendrov
    Tyler Lu
    Hubert Pham
    Mohammad Ghavamzadeh
    ACM Transactions on Recommender Systems (2024)
    Preview abstract Interactive recommender systems have emerged as a promising paradigm to overcome the limitations of the primitive user feedback used by traditional recommender systems (e.g., clicks, item consumption, ratings). They allow users to express intent, preferences, constraints, and contexts in a richer fashion, often using natural language (including faceted search and dialogue). Yet more research is needed to find the most effective ways to use this feedback. One challenge is inferring a user's semantic intent from the open-ended terms or attributes often used to describe a desired item, and using it to refine recommendation results. Leveraging concept activation vectors (CAVs) (Kim, et al., 2018) a recently developed approach for model interpretability in machine learning, we develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in recommender systems. One novel feature of our approach is its ability to distinguish objective and subjective attributes (both subjectivity of degree and of sense), and associate different senses of subjective attributes with different users. We demonstrate on both synthetic and real-world data sets that our CAV representation not only accurately interprets users' subjective semantics, but can also be used to improve recommendations through interactive item critiquing. View details
    Factual and Personalized Recommendation Language Modeling with Reinforcement Learning
    Jihwan Jeong
    Mohammad Ghavamzadeh
    Proceedings of the First Conference on Language Modeling (COLM-24), Philadelphia (2024)
    Preview abstract Recommender systems (RSs) play a central role in connecting users to products, content and services by matching candidate items to users based on their preferences. While existing RSs often rely on implicit user feedback on recommended items (e.g., clicks, watches, ratings), conversational recommender systems are interacting with users to provide tailored recommendations in natural language. In this work, we aim to develop a recommender language model (LM) that is capable of generating compelling endorsement presentations of relevant items to users, to better explain the details of the items, to connect the items with users’ preferences, and to enhance the likelihood of users accepting recommendations. Specifically, such an LLM-based recommender can understand users’ preferences from users’ RS embeddings summarizing feedback history, output corresponding responses that not only are factually-grounded, but also explain whether these items satisfy users’ preferences in a convincing manner. The pivotal question is how one can gauge the performance of such a LLM recommender. Equipped with a joint reward function that measures factual consistency, convincingness, and personalization, not only can we evaluate the efficacies of different recommender LMs, but we can also utilize this metric as a form of AI feedback to fine-tune our LLM agent via reinforcement learning (RL). Building upon the MovieLens movie recommendation benchmark, we developed a novel conversational recommender delivering personalized movie narratives to users. This work lays the groundwork for recommendation systems that prioritize individualized user experiences without compromising on transparency and integrity. View details
    Embedding-Aligned Language Models
    Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS-24), Vancouver (2024)
    Preview abstract We propose a novel approach for training large language models (LLMs) to adhere to objectives imposed by a latent embedding space. Our method leverages reinforcement learning (RL), treating a pre-trained LLM as an environment. An Embedding-Aligned Guided LanguagE (EAGLE) agent it trained using a significantly smaller language model to iteratively stir the LLM's generation towards optimal regions of a latent embedding space, given some predefined criteria. We demonstrate the effectiveness of the EAGLE agent using the MovieLens 25M dataset, on extrapolation tasks for content gap to satisfy latent user demand, and multi-attribute satisfaction for generating creative variations of entities. Our work paves the way for controlled and grounded text generation using LLMs, ensuring consistency with domain-specific knowledge and data representations. View details
    DynaMITE-RL: A Dynamic Model for Improved Temporal Meta Reinforcement Learning
    Anthony Liang
    Erdem Biyik
    Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS-24), Vancouver (2024)
    Preview abstract We introduce a meta-reinforcement learning (meta-RL) approach, called DynaMITE-RL, to perform approximate inference in environments where the latent information evolves slowly between subtrajectories called sessions. We identify three key modifications to contemporary meta-RL methods: consistency of latent information during sessions, session masking, and prior latent conditioning. We demonstrate the necessity of these modifications on various downstream applications from discrete Gridworld environments to continuous control and simulated robot assistive tasks and find that our approach significantly outperforms contemporary baselines. View details
    A Mixture-of-Expert Approach to RL-based Dialogue Management
    Ofir Nachum
    Dhawal Gupta
    Moonkyung Ryu
    Mohammad Ghavamzadeh
    Proceedings of the Eleventh International Conference on Learning Representations (ICLR-23), Kigali, Rwanda (2023)
    Preview abstract Despite recent advancements in language models (LMs), their application to dialogue management (DM) and ability to carry on rich conversations remains a challenge. We use reinforcement learning (RL) to develop a dialogue agent that avoids being short-sighted (often outputting generic utterances) and maximizes overall user satisfaction. However, existing RL approaches focus on training an agent that operates at the word level. Since generating semantically-correct and sensible utterances from a large vocabulary space is combinatorially complex, RL can struggle to produce engaging dialogue, even if warm-started with a pre-trained LM. To address this issue, we develop a RL-based DM using a novel mixture-of-expert (MoE) approach, which consists of (i) a language representation that captures diverse information, (ii) several modulated LMs (or experts) to generate candidate utterances, and (iii) a RL-based DM that performs dialogue planning with the utterances generated by the experts. This MoE approach provides greater flexibility to generate sensible utterances of different intents, and allows RL to focus on conversational-level DM. We compare it with SOTA baselines on open-domain dialogues and demonstrate its effectiveness both in the diversity and sensibility of the generated utterances as well as the overall DM performance. View details
    Offline Reinforcement Learning for Mixture-of-Expert Dialogue Management
    Dhawal Gupta
    Mohammad Ghavamzadeh
    Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS-23), New Orleans (2023)
    Preview abstract Reinforcement learning (RL) has offered great promise for developing dialogue management (DM) agents that avoid being short-sighted, conduct rich conversations, and maximize overall user satisfaction. Despite recent developments in deep RL and language models (LMs), using RL to power conversational chatbots remain a formidable challenge. This is because deep RL algorithms require online exploration to learn effectively, but collecting fresh human-bot interactions can be expensive and unsafe. This issue is exacerbated by the combinatorial action space that these algorithms need to handle, as most LM agents generate responses at the word-level. Leveraging the recent advances of Mixture-of-Expert Language Models (MoE-LMs) that capture diverse semantics, generate utterances of different intents, and are amenable for multi-turn DM, we develop a gamut of offline RL algorithms that excel in dialogue planning. Through exploiting the MoE-LM structure, our methods significantly reduce the action space and improve the efficacy of RL DM. We compare that with SOTA methods on open-domain dialogues to demonstrate their effectiveness both in the diversity of generated utterances and the overall DM performance. View details
    Preview abstract Interactive Recommender Systems (RSs) have emerged as a promising paradigm to overcome the limitations of the primitive user feedback used by traditional RSs (e.g., clicks, item consumption, ratings), allowing users to express intent, preferences, constraints, and contexts in a richer fashion using natural language. Still, more research is needed to find the most effective ways to use this feedback. One major challenge is inferring a user's intended semantic intent from given the open-ended terms (say, attributes or tags) used to describe a desired item, and utilize that to refine recommendation results. Leveraging Concept Activation Vectors (CAVs) [13], we develop a framework to learn a representation that captures the semantics of such attributes and connect them to user preferences and behaviors in RSs. One novel feature of our approach is its ability to distinguish objective and subjective attributes (including subjectivity of degree and of sense) and associate different senses of subjective attributes with different user. We demonstrate on both synthetic and real-world datasets that our CAV representation not only accurately interprets users' subjective semantics, but can also be used to improve recommendations. View details
    Non-Stationary Off-policy Optimization
    Joey Hong
    Branislav Kveton
    International Conference on Artificial Intelligence and Statistics (AISTATS) (2021)
    Preview abstract Off-policy learning is a framework for estimating the value of and optimizing policies offline from logged data without deploying them. Real-world environments are nonstationary, and the optimized policies should be able to adapt to these changes. To address this challenge, we study the novel problem of off-policy optimization in piecewise-stationary environments. Our key idea is to use a change-point detector to partition the logged data into categorical latent states, then find a near-optimal policy conditioned on latent state. We derive high-probability bounds on our off-policy estimates and optimization. Furthermore, we also propose a practical approach to deploy our policy online and evaluate our approach comprehensively on a real-world clickstream dataset. View details
    Safe Policy Learning for Continuous Control
    Ofir Nachum
    Mohammad Ghavamzadeh
    Conference on Robot Learning (CoRL) (2020)
    Preview abstract We study continuous action reinforcement learning problems in which it is crucial that the agent interacts with the environment only through near-safe policies, i.e.,~policies that keep the agent in desirable situations, both during training and at convergence. We formulate these problems as constrained Markov decision processes (CMDPs) and present safe policy optimization algorithms that are based on a Lyapunov approach to solve them. Our algorithms can use any standard policy gradient (PG) method, such as deep deterministic policy gradient (DDPG) or proximal policy optimization (PPO), to train a neural network policy, while enforcing near-constraint satisfaction for every policy update by projecting either the policy parameter or the selected action onto the set of feasible solutions induced by the state-dependent linearized Lyapunov constraints. Compared to the existing constrained PG algorithms, ours are more data efficient as they are able to utilize both on-policy and off-policy data. Moreover, in practice our action-projection algorithm often leads to less conservative policy updates and allows for natural integration into an end-to-end PG training pipeline. We evaluate our algorithms and compare them with the state-of-the-art baselines on several simulated (MuJoCo) tasks, as well as a real-world robot obstacle-avoidance problem, demonstrating their effectiveness in terms of balancing performance and constraint satisfaction. View details