A Mixture-of-Expert Approach to RL-based Dialogue Management

Yinlam Chow
Ofir Nachum
Dhawal Gupta
Moonkyung Ryu
Mohammad Ghavamzadeh
Proceedings of the Eleventh International Conference on Learning Representations (ICLR-23), Kigali, Rwanda(2023)


Despite recent advancements in language models (LMs), their application to dialogue management (DM) and ability to carry on rich conversations remains a challenge. We use reinforcement learning (RL) to develop a dialogue agent that avoids being short-sighted (often outputting generic utterances) and maximizes overall user satisfaction. However, existing RL approaches focus on training an agent that operates at the word level. Since generating semantically-correct and sensible utterances from a large vocabulary space is combinatorially complex, RL can struggle to produce engaging dialogue, even if warm-started with a pre-trained LM. To address this issue, we develop a RL-based DM using a novel mixture-of-expert (MoE) approach, which consists of (i) a language representation that captures diverse information, (ii) several modulated LMs (or experts) to generate candidate utterances, and (iii) a RL-based DM that performs dialogue planning with the utterances generated by the experts. This MoE approach provides greater flexibility to generate sensible utterances of different intents, and allows RL to focus on conversational-level DM. We compare it with SOTA baselines on open-domain dialogues and demonstrate its effectiveness both in the diversity and sensibility of the generated utterances as well as the overall DM performance.

Research Areas