Reza Mahjourian

Reza Mahjourian

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Robotic Table Tennis: A Case Study into a High Speed Learning System
    Jon Abelian
    Saminda Abeyruwan
    Michael Ahn
    Justin Boyd
    Erwin Johan Coumans
    Omar Escareno
    Wenbo Gao
    Navdeep Jaitly
    Juhana Kangaspunta
    Satoshi Kataoka
    Gus Kouretas
    Yuheng Kuang
    Corey Lynch
    Thinh Nguyen
    Ken Oslund
    Barney J. Reed
    Anish Shankar
    Avi Singh
    Grace Vesom
    Peng Xu
    Robotics: Science and Systems (2023)
    Preview abstract We present a deep-dive into a learning robotic system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized and novel perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description including numerous design decisions that are typically not widely disseminated, with a collection of ablation studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, and sensitivity to policy hyper-parameters and choice of action space. A video demonstrating the components of our system and details of experimental results is included in the supplementary material. View details
    Unsupervised monocular depth and ego-motion learning with structure and semantics
    Soeren Pirk
    CVPR Workshop on Visual Odometry & Computer Vision Applications Based on Location Clues (2019)
    Preview abstract We present an approach which takes advantage of both structure and semantics for unsupervised monocular learning of depth and ego-motion. More specifically we model the motions of individual objects and learn their 3D motion vector jointly with depth and egomotion. We obtain more accurate results, especially for challenging dynamic scenes not addressed by previous approaches. This is an extended version of Casser et al. Code and models have been open sourced at: https://sites.google.com/corp/view/struct2depth. View details
    Preview abstract Learning to predict scene depth from RGB inputs is a challenging task both for indoor and outdoor robot navigation. In this work we address unsupervised learning of scene depth and robot ego-motion where supervision is provided by monocular videos, as cameras are the cheapest, least restrictive and most ubiquitous sensor for robotics. Previous work in unsupervised image-to-depth learning has established strong baselines in the domain. We propose a novel approach which produces higher quality results, is able to model moving objects and is shown to transfer across data domains, e.g. from outdoors to indoor scenes. The main idea is to introduce geometric structure in the learning process, by modeling the scene and the individual objects; camera ego-motion and object motions are learned from monocular videos as input. Furthermore an online refinement method is introduced to adapt learning on the fly to unknown domains. The proposed approach outperforms all state-of-the-art approaches, including those that handle motion e.g. through learned flow. Our results are comparable in quality to the ones which used stereo as supervision and significantly improve depth prediction on scenes and datasets which contain a lot of object motion. The approach is of practical relevance, as it allows transfer across environments, by transferring models trained on data collected for robot navigation in urban scenes to indoor navigation settings. The code associated with this paper can be found at https://sites.google.com/ view/struct2depth. View details
    Unsupervised Monocular Depth and Ego-motion Learning with Structure and Semantics
    Soeren Pirk
    CVPR Workshop on Visual Odometry & Computer Vision Applications Based on Location Clues (VOCVALC) (2019)
    Preview abstract We present an approach which takes advantage of both structure and semantics for unsupervised monocular learning of depth and ego-motion. More specifically, we model the motion of individual objects and learn their 3D motion vector jointly with depth and ego-motion. We obtain more accurate results, especially for challenging dynamic scenes not addressed by previous approaches. This is an extended version of Casser et al. [AAAI'19]. Code and models have been open sourced at: https://sites.google.com/view/struct2depth. View details
    Preview abstract Predicting the future to anticipate the outcome of events and actions is a critical attribute of autonomous agents; particularly for agents which must rely heavily on real time visual data for decision making. Working towards this capability, we address the task of predicting future frame segmentation from a stream of monocular video by leveraging the 3D structure of the scene. Our framework is based on learnable sub-modules capable of predicting pixel-wise scene semantic labels, depth, and camera ego-motion of adjacent frames. We further propose a recurrent neural network based model capable of predicting future ego-motion trajectory as a function of a series of past ego-motion steps. Ultimately, we observe that leveraging 3D structure in the model facilitates successful prediction, achieving state of the art accuracy in future semantic segmentation. View details
    Preview abstract We present a novel approach for unsupervised learning of depth and ego-motion from monocular video. Unsupervised learning removes the need for separate supervisory signals (depth or ego-motion ground truth, or multi-view video). Prior work in unsupervised depth learning uses pixel-wise or gradient-based losses, which only consider pixels in small local neighborhoods. Our main contribution is to explicitly consider the inferred 3D geometry of the scene, enforcing consistency of the estimated 3D point clouds and ego-motion across consecutive frames. This is a challenging task and is solved by a novel (approximate) backpropagation algorithm for aligning 3D structures. We combine this novel 3D-based loss with 2D losses based on photometric quality of frame reconstructions using estimated depth and ego-motion from adjacent frames. We also incorporate validity masks to avoid penalizing areas in which no useful information exists. We test our algorithm on the KITTI dataset and on a video dataset captured on an uncalibrated mobile phone camera. Our proposed approach consistently improves depth estimates on both datasets, and outperforms the state-of-the-art for both depth and ego-motion. Because we only require a simple video, learning depth and ego-motion on large and varied datasets becomes possible. We demonstrate this by training on the low quality uncalibrated video dataset and evaluating on KITTI, ranking among top performing prior methods which are trained on KITTI itself. View details
    Preview abstract Predicting the future to anticipate the outcome of events and actions is a critical attribute of autonomous agents. In this work, we address the task of predicting future frame segmentation from a stream of monocular video by leveraging the 3D structure of the scene. Our framework is based on learnable sub-modules capable of predicting pixelwise scene semantic labels, depth, and camera ego-motion of adjacent frames. Ultimately, we observe that leveraging 3D structure in the model facilitates successful positioning of objects in the 3D scene, achieving state of the art accuracy in future semantic segmentation. View details
    Preview abstract We consider the problem of next frame prediction from video input. A recurrent convolutional neural network is trained to predict depth from monocular video input, which, along with the current video image and the camera trajectory, can then be used to compute the next frame. Unlike prior next- frame prediction approaches, we take advantage of the scene geometry and use the predicted depth for generating the next frame prediction. Our approach can produce rich next frame predictions which include depth information attached to each pixel. Another novel aspect of our approach is that it predicts depth from a sequence of images (e.g. in a video), rather than from a single still image. We evaluate the proposed approach on the KITTI dataset, a standard dataset for benchmarking tasks relevant to au- tonomous driving. The proposed method produces results which are visually and numerically superior to existing methods that directly predict the next frame. We show that the accuracy of depth prediction improves as more prior frames are considered. View details