Sherry Moore
Research Areas
Authored Publications
Sort By
Robotic Table Tennis: A Case Study into a High Speed Learning System
Jon Abelian
Saminda Abeyruwan
Michael Ahn
Justin Boyd
Erwin Johan Coumans
Omar Escareno
Wenbo Gao
Navdeep Jaitly
Juhana Kangaspunta
Satoshi Kataoka
Gus Kouretas
Yuheng Kuang
Corey Lynch
Thinh Nguyen
Ken Oslund
Barney J. Reed
Anish Shankar
Avi Singh
Grace Vesom
Peng Xu
Robotics: Science and Systems (2023)
Preview abstract
We present a deep-dive into a learning robotic system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized and novel perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description including numerous design decisions that are typically not widely disseminated, with a collection of ablation studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, and sensitivity to policy hyper-parameters and choice of action space. A video demonstrating the components of our system and details of experimental results is included in the supplementary material.
View details
Large-Scale Evolution of Image Classifiers
Andrew Selle
Yutaka Leon Suematsu
ICML (2017)
Preview abstract
Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone. Evolutionary algorithms provide a technique to discover such networks automatically. Despite significant computational requirements, we show that evolving models that rival large, hand-designed architectures is possible today. We employ simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and CIFAR-100 datasets, starting from trivial initial conditions. To do this, we use novel and intuitive mutation operators that navigate large search spaces. We stress that no human participation is required once evolution starts and that the output is a fully-trained model. Throughout this work, we place special emphasis on the repeatability of results, the variability in the outcomes and the computational requirements.
View details
TensorFlow: A system for large-scale machine learning
Jianmin Chen
Matthieu Devin
Geoffrey Irving
Manjunath Kudlur
Rajat Monga
Benoit Steiner
Paul Tucker
Vijay Vasudevan
Pete Warden
Yuan Yu
Xiaoqiang Zheng
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association (2016), pp. 265-283
Preview abstract
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous “parameter server” designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor- Flow achieves for several real-world applications.
View details
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Ashish Agarwal
Eugene Brevdo
Craig Citro
Matthieu Devin
Ian Goodfellow
Andrew Harp
Geoffrey Irving
Yangqing Jia
Rafal Jozefowicz
Lukasz Kaiser
Manjunath Kudlur
Dan Mané
Rajat Monga
Chris Olah
Mike Schuster
Jonathon Shlens
Benoit Steiner
Ilya Sutskever
Kunal Talwar
Paul Tucker
Vijay Vasudevan
Pete Warden
Yuan Yu
Xiaoqiang Zheng
tensorflow.org (2015)
Preview abstract
TensorFlow is an interface for expressing machine learning
algorithms, and an implementation for executing such algorithms.
A computation expressed using TensorFlow can be
executed with little or no change on a wide variety of heterogeneous
systems, ranging from mobile devices such as phones
and tablets up to large-scale distributed systems of hundreds
of machines and thousands of computational devices such as
GPU cards. The system is flexible and can be used to express
a wide variety of algorithms, including training and inference
algorithms for deep neural network models, and it has been
used for conducting research and for deploying machine learning
systems into production across more than a dozen areas of
computer science and other fields, including speech recognition,
computer vision, robotics, information retrieval, natural
language processing, geographic information extraction, and
computational drug discovery. This paper describes the TensorFlow
interface and an implementation of that interface that
we have built at Google. The TensorFlow API and a reference
implementation were released as an open-source package under
the Apache 2.0 license in November, 2015 and are available at
www.tensorflow.org.
View details