A Field Guide for Pacing Budget and ROS Constraints
Abstract
Budget pacing has been a standard service offered by major Internet advertising platforms for quite some time now. Budget pacing systems seek to optimize advertiser returns subject to budget constraints, through smooth spending of advertiser budgets. In the past few years, autobidding products that provide value-optimizing real-time bidding subject to return-on-spend (ROS) constraints as a service to advertisers have seen a prominent rise in adoption. The algorithms that govern these two services, namely bidding and budgeting, are not necessarily always a single unified entity that optimizes a global objective. But should these algorithms jointly optimize? How do the separate and joint optimizations compare? Systematically answering these questions, with both theoretical analysis and empirical studies is the focus of this work.
We compare (a) the sequential algorithm that first constructs the advertiser's ROS-pacing bid and then lowers that bid for budget pacing, with (b) the optimal joint algorithm that optimizes advertiser returns subject to both budget and ROS constraints. We establish the superiority of joint optimization both theoretically as well as empirically based on data from a large advertising platform. In the process, we identify a third algorithm that retains the theoretical properties of the joint optimization algorithm, while performing almost as well empirically as the joint optimization algorithm. This algorithm eases the transition from a sequential to a fully joint implementation by minimizing the amount of interaction between the two services.
We compare (a) the sequential algorithm that first constructs the advertiser's ROS-pacing bid and then lowers that bid for budget pacing, with (b) the optimal joint algorithm that optimizes advertiser returns subject to both budget and ROS constraints. We establish the superiority of joint optimization both theoretically as well as empirically based on data from a large advertising platform. In the process, we identify a third algorithm that retains the theoretical properties of the joint optimization algorithm, while performing almost as well empirically as the joint optimization algorithm. This algorithm eases the transition from a sequential to a fully joint implementation by minimizing the amount of interaction between the two services.