Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 11082 publications
CrossCheck: Input Validation for WAN Control Systems
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
Networked Systems Design and Implementation (NSDI) (2026) (to appear)
Preview abstract
We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages.
Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data).
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
A Computer Vision Problem in Flatland
Erin Connelly
Annalisa Crannell
Timothy Duff
Rekha R. Thomas
SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
Preview abstract
When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image.
View details
Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
Michael Madaio
Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
Preview abstract
Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place?
View details
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
Sunny Rajagopalan
Alireza Golestaneh
Shubhra Chandra
Min Zhou
Jonathan Vronsky
Songbai Yan
2026
Preview abstract
We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs.
View details
Preview abstract
Adaptive methods with non-diagonal preconditioning have demonstrated state-of-the-art performances on various tasks. However, the high memory cost of the existing non-diagonal preconditioning methods makes them unsuitable for the training of Low Rank Adaptions (LoRA). Additionally, these methods do not meet the criteria of efficient feature learning, which is important for LoRA optimization. In this work, we propose a non-diagonal preconditioning method to improve LoRA optimization. It has a low memory cost and achieves efficient feature learning through transformation invariance among equivalent LoRA weights. We provide theoretical justifications for our method. Our experiments on LLM LoRA finetuning demonstrate the effectiveness of our method.
View details
Preview abstract
Measuring productivity is equivalent to building a model. All models are wrong, but some are useful. Productivity models are often “worryingly selective” (wrong because of omissions). Worrying selectivity can be combated by taking a holistic approach that includes multiple measurements of multiple outcomes. Productivity models should include multiple outcomes, metrics, and methods.
View details
PageFlex: Flexible and Efficient User-space Delegation of Linux Paging Policies with eBPF
Kan Wu
Zhiyuan Guo
Suli Yang
Rajath Shashidhara
Wei Xu
Alex Snoeren
Kim Keeton
2025
Preview abstract
To increase platform memory efficiency, hyperscalers like Google and Meta transparently demote “cold” application data to cheaper cost-per-byte memory tiers like compressed memory and NVMe SSDs. These systems rely on standard kernel paging policies and mechanisms to maximize the achievable memory savings without hurting application performance. Although the literature promises better policies, implementing and deploying them within the Linux kernel
is challenging. Delegating policies and mechanisms to user space, through userfaultfd or library-based approaches, incurs overheads and may require modifying application code. We present PageFlex, a framework for delegating Linux paging policies to user space with minimal overhead and full compatibility with existing real-world deployments. PageFlex uses eBPF to delegate policy decisions while providing low-overhead access to in-kernel memory state and access information, thus balancing flexibility and performance. Additionally, PageFlex supports different paging strategies for distinct memory regions and application phases. We show that
PageFlex can delegate existing kernel-based policies with little (< 1%) application slowdown, effectively realizing the benefits of state-of-the-art policies like Hyperbolic caching and Leap prefetching, and unlocking application-specific benefits through region- and phase-aware policy specialization.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details
Syntactic and Semantic Gender Biases in the Language on Children’s Television: Evidence from a Corpus of 98 Shows from 1960 to 2018
Andrea Vial
Ruyuan Zuo
Shreya Havaldar
Morteza Dehghani
Andrei Cimpian
Psychological Science (2025)
Preview abstract
Biased media content shapes children’s social concepts and identities. We examined gender bias in a large corpus of scripts from 98 children’s television programs spanning 1960 to 2018 (6,600 episodes, ~2.7 million sentences, ~16 million words). We focused on agency and communion, the fundamental psychological dimensions underlying gender stereotypes. At the syntactic level, words referring to men/boys (vs. women/girls) appear more often in the agent (vs. patient) role. This syntactic bias remained stable between 1960 and 2018. At the semantic level, words referring to men/boys (vs. women/girls) co-occurred more often with words denoting agency. Words denoting communion showed both stereotypical and counterstereotypical associations. Some semantic gender biases have remained unchanged or weakened over time; others have grown. These findings suggest gender stereotypes are built into the core of children’s stories. Whether we are closer to gender equality in children’s media depends on where one looks.
View details
Preview abstract
Most work on adaptive data analysis assumes that samples in the dataset are independent. When correlations are allowed, even the non-adaptive setting can become intractable, unless some structural constraints are imposed. To address this, Bassily and Freund [2016] introduced the elegant framework of {\em concentrated queries}, which requires the analyst to restrict itself to queries that are concentrated around their expected value. While this assumption makes the problem trivial in the non-adaptive setting, in the adaptive setting it remains quite challenging. In fact, all known algorithms in this framework support significantly fewer queries than in the independent case: At most $O(n)$ queries for a sample of size $n$, compared to $O(n^2)$ in the independent setting.
In this work, we prove that this utility gap is inherent under the current formulation of the concentrated queries framework, assuming some natural conditions on the algorithm. Additionally, we present a simplified version of the best-known algorithms that match our impossibility result.
View details
Online-EYE: Multimodal Implicit Eye Tracking Calibration for XR
Baosheng James Hou
Lucy Abramyan
Prasanthi Gurumurthy
Khushman Patel
Haley Adams
Andrea Colaco
Ken Pfeuffer
Hans Gellersen
Karan Ahuja
2025
Preview abstract
Unlike other inputs for VR that work out of the box, eye tracking typically requires custom calibration per user or session. We present a multimodal inputs approach for implicit calibration of eye tracker in VR, leveraging UI interaction for continuous, background calibration. Our method analyzes gaze data alongside controller interaction with UI elements, and employing ML techniques it continuously refines the calibration matrix without interrupting users from their current tasks. Potentially eliminating the need for explicit calibration. We demonstrate the accuracy and effectiveness of this implicit approach across various tasks and real time applications achieving comparable eye tracking accuracy to native, explicit calibration.
View details