Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10961 publications
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    Probing non-equilibrium topological order on a quantum processor
    Melissa Will
    Tyler Cochran
    Bernhard Jobst
    Michael Knap
    Adam Gammon-Smith
    Frank Pollmann
    Nature, 645 (2025), 348–353
    Preview abstract Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter. View details
    Synthesizing and Adapting Error Correction Data for Mobile Large Language Model Applications
    Yanxiang Zhang
    Zheng Xu
    Yuanbo Zhang
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track) (2025)
    Preview abstract Error correction is an important capability when applying large language models (LLMs) to facilitate user typing on mobile devices. In this paper, we use LLMs to synthesize a high-quality dataset of error correction pairs to evaluate and improve LLMs for mobile applications. We first prompt LLMs with error correction domain knowledge to build a scalable and reliable addition to the existing data synthesis pipeline. We then adapt the synthetic data distribution to match the mobile application domain by reweighting the samples. The reweighting model is learnt by predicting (a handful of) live A/B test metrics when deploying LLMs in production, given the LLM performance on offline evaluation data and scores from a small privacy-preserving on-device language model. Finally, we present best practices for mixing our synthetic data with other data sources to improve model performance on error correction in both offline evaluation and production live A/B testing. View details
    Fast electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    Alec White
    Rolando Somma
    arXiv:2502.15882 (2025)
    Preview abstract The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst. View details
    Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
    Dominic Berry
    Yu Tong
    Alec White
    Tae In Kim
    Lin Lin
    Seunghoon Lee
    Garnet Chan
    PRX Quantum, 6 (2025), pp. 020327
    Preview abstract Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the Fe⁢Mo cofactor by estimating the overlap of different MPS initial states with potential ground states of the Fe⁢Mo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the Fe⁢Mo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system. View details
    Preview abstract Understanding and controlling the reasoning processes of large language models (LLMs) is crucial for their reliable deployment. In this work, we investigate the latent representation of self-evaluation behavior - the ability of a model to assess its own reasoning steps - a vital behavior for robust reasoning. Through targeted steering vector computation, we identify a direction within LLM activations that represents this self-evaluation behavior. Crucially, we demonstrate that this steering vector for self-evaluation exhibits remarkable cross-contextual efficacy, working well across different domains (e.g., math and medicine) and languages (e.g., English and Spanish). This suggests that the identified latent direction captures a fundamental, abstract representation of self-evaluation within the LLM's internal state, offering a promising avenue for interpretable and controllable reasoning across diverse applications. View details
    Preview abstract We study the $\ell_2$ mechanism for computing a $d$-dimensional statistic with bounded $\ell_2$ sensitivity under approximate differential privacy. Across a range of privacy parameters, we find that the $\ell_2$ mechanism obtains error approaching that of the Laplace mechanism as $d \to 1$ and approaching that of the Gaussian mechanism as $d \to \infty$; however, it dominates both in between. View details
    Preview abstract When dividing items among agents, two of the most widely studied fairness notions are envy-freeness and proportionality. We consider a setting where m chores are allocated to n agents and the disutility of each chore for each agent is drawn from a probability distribution. We show that an envy-free allocation exists with high probability provided that m ≥ 2n, and moreover, m must be at least n + Θ(n) in order for the existence to hold. On the other hand, we prove that a proportional allocation is likely to exist as long as m = ω(1), and this threshold is asymptotically tight. Our results reveal a clear contrast with the allocation of goods, where a larger number of items is necessary to ensure existence for both notions. View details
    Optimization by Decoded Quantum Interferometry
    Stephen Jordan
    Mary Wootters
    Alexander Schmidhuber
    Robbie King
    Sergei Isakov
    Nature, 646 (2025), 831–836
    Preview abstract Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems. View details
    Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
    Zhanke Zhou
    Xuan Li
    Zhaocheng Zhu
    Michael Galkin
    Xiao Feng
    Sanmi Koyejo
    Jian Tang
    Bo Han
    Reasoning and Planning for LLMs @ ICLR 2025
    Preview abstract Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative analysis shows that the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a neural model that predicts any property they observe. We showcase this advantage by adapting our tool to a lightweight verifier, which significantly improves reasoning by evaluating the correctness of reasoning paths. View details
    Preview abstract We combine several recent advancements to solve $(1+\varepsilon)$-transshipment and $(1+\varepsilon)$-maximum flow with a parallel algorithm with $\tilde{O}(1/\varepsilon)$ depth and $\tilde{O}(m/\varepsilon)$ work. We achieve this by developing and deploying suitable parallel linear cost approximators in conjunction with an accelerated continuous optimization framework known as the box-simplex game by Jambulapati et al. (ICALP 2022). A linear cost approximator is a linear operator that allows us to efficiently estimate the cost of the optimal solution to a given routing problem. Obtaining accelerated $\varepsilon$ dependencies for both problems requires developing a stronger multicommodity cost approximator, one where cancellations between different commodities are disallowed. For maximum flow, we observe that a recent linear cost approximator due to Agarwal et al. (SODA 2024) can be augmented with additional parallel operations and achieve $\varepsilon^{-1}$ dependency via the box-simplex game. For transshipment, we also obtain construct a deterministic and distributed approximator. This yields a deterministic CONGEST algorithm that requires $\tilde{O}(\varepsilon^{-1}(D + \sqrt{n}))$ rounds on general networks of hop diameter $D$ and $\tilde{O}(\varepsilon^{-1}D)$ rounds on minor-free networks to compute a $(1+\varepsilon)$-approximation. View details
    ×