Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10795 publications
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Integer Programming for Generalized Causal Bootstrap Designs
Adel Javanmard
Nick Doudchenko
Proceedings of the 42 nd International Conference on Machine Learning (2025)
Preview abstract
In experimental causal inference, we distinguish between two sources of uncertainty: design uncertainty, due to the treatment assignment mechanism, and sampling uncertainty, when the sample is drawn from a super-population. This distinction matters in settings with small fixed samples and heterogeneous treatment effects, as in geographical experiments. The standard bootstrap procedure most often used by practitioners primarily estimates sampling uncertainty, and the causal bootstrap procedure, which accounts for design uncertainty, was developed for the completely randomized design and the difference-in-means estimator, whereas non-standard designs and estimators are often used in these low-power regimes. We address this gap by proposing an integer program which computes numerically the worst-case copula used as an input to the causal bootstrap method, in a wide range of settings. Specifically, we prove the asymptotic validity of our approach for unconfounded, conditionally unconfounded,
and individualistic with bounded confoundedness assignments, as well as generalizing to any linear-in-treatment and quadratic-in-treatment estimators. We demonstrate the refined confidence intervals achieved through simulations of small geographical experiments.
View details
Scaling Laws for Downstream Task Performance in Machine Translation
Natalia Ponomareva
Hussein Hazimeh
Sanmi Koyejo
International Conference on Learning Representations (ICLR) (2025) (to appear)
Preview abstract
Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the \emph{pretraining} data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data.
View details
On the Design of the Binaural Rendering Library for Eclipsa Audio Immersive Audio Container
Tomasz Rudzki
Gavin Kearney
AES 158th Convention of the Audio Engineering Society (2025)
Preview abstract
Immersive Audio Media and Formats (IAMF), also known as Eclipsa Audio, is an open-source audio container developed to accommodate multichannel and scene-based audio formats. Headphone-based delivery of IAMF audio requires efficient binaural rendering. This paper introduces the Open Binaural Renderer (OBR), which is designed to render IAMF audio. It discusses the core rendering algorithm, the binaural filter design process as well as real-time implementation of the renderer in a form of an open-source C++ rendering library. Designed for
multi-platform compatibility, the renderer incorporates a novel approach to binaural audio processing, leveraging a combination of spherical harmonic (SH) based virtual listening room model and anechoic binaural filters. Through its design, the IAMF binaural renderer provides a robust solution for delivering high-quality immersive audio across diverse platforms and applications.
View details
Mufu: Multilingual Fused Learning for Low- Resource Translation with LLM
Zheng Lim
Honglin Yu
Trevor Cohn
International Conference on Learning Representations (ICLR) 2025
Preview abstract
Multilingual large language models (LLMs) are great translators, but this is largely limited to high-resource languages. For many LLMs, translating in and out of low-resource languages remains a challenging task. To maximize data efficiency in this low-resource setting, we introduce Mufu, which includes a selection of automatically generated multilingual candidates and an instruction to correct inaccurate translations in the prompt. Mufu prompts turn a translation task into a postediting one, and seek to harness the LLM's reasoning capability with auxiliary translation candidates, from which the model is required to assess the input quality, align the semantics cross-lingually, copy from relevant inputs and override instances that are incorrect. Our experiments on En-XX translations over the Flores-200 dataset show LLMs finetuned against Mufu-style prompts are robust to poor quality auxiliary translation candidates, achieving performance superior to NLLB 1.3B distilled model in 64% of low- and very-low-resource language pairs. We then distill these models to reduce inference cost, while maintaining on average 3.1 chrF improvement over finetune-only baseline in low-resource translations.
View details
Mix&Slice
Marco Rosa
Encyclopedia of Cryptography, Security and Privacy, Springer Nature Switzerland (2025), pp. 1550-1555
Preview abstract
Mix&Slice is an encryption technique that enables efficient and robust access revocation on resources stored at external cloud providers. The technique makes use of a transformation that provides strong inter-dependency in the encrypted representation of a resource. To perform access revocation, it is then sufficient to re-encrypt a small portion of the resource to have guarantees that the resource (and any of its parts) will become unintelligible to those from whom access has been revoked.
View details
Passive Heart Rate Monitoring During Smartphone Use in Everyday Life
Shun Liao
Paolo Di Achille
Jiang Wu
Silviu Borac
Jonathan Wang
Eric Teasley
Lawrence Cai
Daniel McDuff
Hao-Wei Su
Brent Winslow
Anupam Pathak
Shwetak Patel
Jim Taylor
Jamie Rogers
(2025)
Preview abstract
Resting heart rate (RHR) is an important biomarker of cardiovascular health and mortality, but tracking it longitudinally generally requires a wearable device, limiting its availability. We present PHRM, a deep learning system for passive heart rate (HR) and RHR measurements during ordinary smartphone use, using facial video-based photoplethysmography. Our system was developed using 225,773 videos from 495 participants and validated on 185,970 videos from 205 participants in laboratory and free-living conditions – the largest validation study of its kind. Compared to reference electrocardiogram, PHRM achieved a mean absolute percentage error (MAPE) <10% for HR measurements across three skin tone groups of light, medium and dark pigmentation; MAPE for each skin tone group was non-inferior versus the others. Daily RHR measured by PHRM had a mean absolute error <5 bpm compared to a wearable HR tracker, and was associated with known risk factors. These results highlight the potential of smartphones to enable passive and equitable heart health monitoring.
View details
Enhancing XR Auditory Realism via Scene-Aware Multimodal Acoustic Rendering
Jihan Li
Penghe Zu
Pranav Sahay
Maruchi Kim
Jack Obeng-Marnu
Farley Miller
Mahitha Rachumalla
Rajeev Nongpiur
2025
Preview abstract
In Extended Reality (XR), rendering sound that accurately simulates real-world acoustics is pivotal in creating lifelike and believable virtual experiences. However, existing XR spatial audio rendering methods often struggle with real-time adaptation to diverse physical scenes, causing a sensory mismatch between visual and auditory cues that disrupts user immersion. To address this, we introduce SAMOSA, a novel on-device system that renders spatially accurate sound by dynamically adapting to its physical environment. SAMOSA leverages a synergistic multimodal scene representation by fusing real-time estimations of room geometry, surface materials, and semantic-driven acoustic context. This rich representation then enables efficient acoustic calibration via scene priors, allowing the system to synthesize a highly realistic Room Impulse Response (RIR). We validate our system through technical evaluation using acoustic metrics for RIR synthesis across various room configurations and sound types, alongside an expert evaluation (N=12). Evaluation results demonstrate SAMOSA’s feasibility and efficacy in enhancing XR auditory realism.
View details
"Accessibility people, you go work on that thing of yours over there": Addressing Disability Inclusion in AI Product Organizations
Sanika Moharana
Erin Buehler
Michael Madaio
Vinita Tibdewal
Proceedings of AIES 2025 (2025) (to appear)
Preview abstract
The rapid emergence of generative AI models and AI powered systems has surfaced a variety of concerns around responsibility, safety, and inclusion. Some of these concerns address specific vulnerable communities, including people with disabilities. At the same time, these systems may introduce harms upon disabled users that do not fit neatly into existing accessibility classifications, and may not be addressed by current accessibility practices. In this paper, we investigate how stakeholders across a variety of job types are encountering and addressing potentially negative impacts of AI on users with disabilities. Through interviews with 25 practitioners, we identify emerging challenges related to AI’s impact on disabled users, systemic obstacles that contribute to problems, and effective strategies for impacting change. Based on these findings, we offer suggestions for improving existing processes for creating AI-powered systems and supporting practitioners in developing skills to address these emerging challenges.
View details
Preview abstract
During remote communication, participants often share both digital and physical content, such as product designs, digital assets, and environments, to enhance mutual understanding. Recent advances in augmented communication have facilitated users to swiftly create and share digital 2D copies of physical objects from video feeds into a shared space. However, conventional 2D representations of digital objects limits spatial referencing in immersive environments. To address this, we propose Thing2Reality, an Extended Reality (XR) meeting platform that facilitates spontaneous discussions of both digital and physical items during remote sessions. With Thing2Reality, users can quickly materialize ideas or objects in immersive environments and share them as conditioned multiview renderings or 3D Gaussians. Thing2Reality enables users to interact with remote objects or discuss concepts in a collaborative manner. Our user studies revealed that the ability to interact with and manipulate 3D representations of objects significantly enhances the efficiency of discussions, with the potential to augment discussion of 2D artifacts.
View details
Beyond the Phone: Exploring Context-aware Interaction Between Mobile andMixed Reality Devices
Fengyuan Zhu
Daniel Kalmar
Mahdi Tayarani
2025
Preview abstract
Despite the surge in popularity of virtual reality (VR), mobile phones remain the primary medium for accessing digital content, offering both privacy and portability. This short paper presents Beyond the Phone, a novel framework that enhances mobile phones in VR with context-aware controls and spatial augmentation. We first establish a comprehensive design space through brainstorming and iterative discussions with VR experts. We then develop a proof-of-concept system that analyzes UI layouts to offer context-aware controls and spatial augmentation, targeting six key application areas within our design space. Finally, we demonstrate that our system can effectively adapt to a broad spectrum of applications at runtime, and discuss future directions with reviews with seven experts.
View details
Preview abstract
Measuring productivity is equivalent to building a model. All models are wrong, but some are useful. Productivity models are often “worryingly selective” (wrong because of omissions). Worrying selectivity can be combated by taking a holistic approach that includes multiple measurements of multiple outcomes. Productivity models should include multiple outcomes, metrics, and methods.
View details
Preview abstract
Evolutionary relationships between entities within an ecological niche are characterised by varying degrees of interdependence and resulting forms of symbiotic, predatory or competitive behaviors. This paper hypothesizes that mutual prediction is a defining factor in the kind of relationship which forms between entities, as well as the power distribution and stability of that relationship. Throughout history, humans have engaged in complex mutually predictive relationships with the animals we domesticate, the plants we eat and the tools we create. We have generally had a better predictive model of the entities we have co-evolved with than they have had of us. In AI we encounter the first entity which may be able to predict us - including our thoughts, beliefs, feelings and plans - better than we can predict it. The current state of human predictive advantage may give way to predictive equilibrium or even human out-prediction by AIs. This paper defines a classification system for degrees of mutual prediction in human-AI interactions ranging from rules-based prediction through to a speculative capacity for mindreading, and uses the classification as axes to map human predictive ability against AI predictive ability. Past, present, and speculated future relationships between humans and AIs are plotted on the map, encompassing cases of predictive imbalance in both directions and exploring the implications of mutual prediction for human-AI coevolutionary paths. The examples highlight possible sources of human-AI misalignment and the mutual prediction framework provides a lens through which to understand AI systems as part of evolutionary processes at large.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details