Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10070 publications
    PROMPT: A Fast and Extensible Memory Profiling Framework
    Ziyang Xu
    Yebin Chon
    Yian Su
    Zujun Tan
    Simone Campanoni
    David I. August
    Proceedings of the ACM on Programming Languages, 8, Issue OOPSLA (2024)
    Preview abstract Memory profiling captures programs' dynamic memory behavior, assisting programmers in debugging, tuning, and enabling advanced compiler optimizations like speculation-based automatic parallelization. As each use case demands its unique program trace summary, various memory profiler types have been developed. Yet, designing practical memory profilers often requires extensive compiler expertise, adeptness in program optimization, and significant implementation effort. This often results in a void where aspirations for fast and robust profilers remain unfulfilled. To bridge this gap, this paper presents PROMPT, a framework for streamlined development of fast memory profilers. With PROMPT, developers need only specify profiling events and define the core profiling logic, bypassing the complexities of custom instrumentation and intricate memory profiling components and optimizations. Two state-of-the-art memory profilers were ported with PROMPT where all features preserved. By focusing on the core profiling logic, the code was reduced by more than 65% and the profiling overhead was improved by 5.3× and 7.1× respectively. To further underscore PROMPT's impact, a tailored memory profiling workflow was constructed for a sophisticated compiler optimization client. In 570 lines of code, this redesigned workflow satisfies the client’s memory profiling needs while achieving more than 90% reduction in profiling overhead and improved robustness compared to the original profilers. View details
    Preview abstract Learned reweighting (LRW) approaches to supervised learning use an optimization criterion to assign weights for training instances, in order to maximize performance on a representative validation dataset. We pose and formalize the problem of optimized selection of the validation set used in LRW training, to improve classifier generalization. In particular, we show that using hard-to-classify instances in the validation set has both a theoretical connection to, and strong empirical evidence of generalization. We provide an efficient algorithm for training this meta-optimized model, as well as a simple train-twice heuristic for careful comparative study. We demonstrate that LRW with easy validation data performs consistently worse than LRW with hard validation data, establishing the validity of our meta-optimization problem. Our proposed algorithm outperforms a wide range of baselines on a range of datasets and domain shift challenges (Imagenet-1K, CIFAR-100, Clothing-1M, CAMELYON, WILDS, etc.), with ~1% gains using VIT-B on Imagenet. We also show that using naturally hard examples for validation (Imagenet-R / Imagenet-A) in LRW training for Imagenet improves performance on both clean and naturally hard test instances by 1-2%. Secondary analyses show that using hard validation data in an LRW framework improves margins on test data, hinting at the mechanism underlying our empirical gains. We believe this work opens up new research directions for the meta-optimization of meta-learning in a supervised learning context. View details
    Preview abstract Help documents are supposed to aid smartphone users in resolving queries such as "How to block calls from unknown numbers?". However, given a query, identifying the right help document, understanding instructions from the document, and using them to resolve the issue at hand is challenging. The user experience may be enhanced by converting the instructions in the help document to a step-by-step tutorial overlaid on the phone UI. Successful execution of this task requires overcoming research challenges in retrieval, parsing, and grounding in the multilingual-multimodal setting. For example, user queries in one language may have to be matched against instructions in another language, which in turn needs to be grounded in a multimodal UI in yet another language. Moreover, there isn’t any relevant dataset for such a task. In order to bridge this gap, we introduce UGIF-DataSet, a multi-lingual, multi-modal UI grounded dataset for step-by-step task completion on the smartphone, containing 4,184 tasks across 8 languages. The instruction steps in UGIF-DataSet are available only in English, so the challenge involves operations in the cross-modal, cross-lingual setting. We compare the performance of different large language models for this task and find that the end-to-end task completion rate drops from 48% in English to 32% for other languages, demonstrating significant overall headroom for improvement. We are hopeful that UGIF-DataSet and our analysis will aid further research on the important problem of sequential task completion in the multilingual and multimodal setting. View details
    ChatDirector: Enhancing Video Conferencing with Space-Aware Scene Rendering and Speech-Driven Layout Transition
    Brian Moreno Collins
    Karthik Ramani
    Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, ACM, pp. 16 (to appear)
    Preview abstract Remote video conferencing systems (RVCS) are widely adopted in personal and professional communication. However, they often lack the co-presence experience of in-person meetings. This is largely due to the absence of intuitive visual cues and clear spatial relationships among remote participants, which can lead to speech interruptions and loss of attention. This paper presents ChatDirector, a novel RVCS that overcomes these limitations by incorporating space-aware visual presence and speech-aware attention transition assistance. ChatDirector employs a real-time pipeline that converts participants' RGB video streams into 3D portrait avatars and renders them in a virtual 3D scene. We also contribute a decision tree algorithm that directs the avatar layouts and behaviors based on participants' speech states. We report on results from a user study (N=16) where we evaluated ChatDirector. The satisfactory algorithm performance and complimentary subject user feedback imply that ChatDirector significantly enhances communication efficacy and user engagement. View details
    Preview abstract Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains — in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/. View details
    Preview abstract We present an analysis of 12 million instances of privacy-relevant reviews publicly visible on the Google Play Store that span a 10 year period. By leveraging state of the art NLP techniques, we examine what users have been writing about privacy along multiple dimensions: time, countries, app types, diverse privacy topics, and even across a spectrum of emotions. We find consistent growth of privacy-relevant reviews, and explore topics that are trending (such as Data Deletion and Data Theft), as well as those on the decline (such as privacy-relevant reviews on sensitive permissions). We find that although privacy reviews come from more than 200 countries, 33 countries provide 90% of privacy reviews. We conduct a comparison across countries by examining the distribution of privacy topics a country’s users write about, and find that geographic proximity is not a reliable indicator that nearby countries have similar privacy perspectives. We uncover some countries with unique patterns and explore those herein. Surprisingly, we uncover that it is not uncommon for reviews that discuss privacy to be positive (32%); many users express pleasure about privacy features within apps or privacy-focused apps. We also uncover some unexpected behaviors, such as the use of reviews to deliver privacy disclaimers to developers. Finally, we demonstrate the value of analyzing app reviews with our approach as a complement to existing methods for understanding users' perspectives about privacy. View details
    Preview abstract We propose Hierarchical Text Spotter (HTS), the first method for the joint task of word-level text spotting and geometric layout analysis. HTS can annotate text in images with a hierarchical representation of 4 levels: character, word, line, and paragraph. The proposed HTS is characterized by two novel components: (1) a Unified-Detector-Polygon (UDP) that produces Bezier Curve polygons of text lines and an affinity matrix for paragraph grouping between detected lines; (2) a Line-to-Character-to-Word (L2C2W) recognizer that splits lines into characters and further merges them back into words. HTS achieves state-of-the-art results on multiple word-level text spotting benchmark datasets as well as geometric layout analysis tasks. Code will be released upon acceptance. View details
    Creative ML Assemblages: The Interactive Politics of People, Processes, and Products
    Ramya Malur Srinivasan
    Katharina Burgdorf
    Jennifer Lena
    ACM Conference on Computer Supported Cooperative Work and Social Computing (2024) (to appear)
    Preview abstract Creative ML tools are collaborative systems that afford artistic creativity through their myriad interactive relationships. We propose using ``assemblage thinking" to support analyses of creative ML by approaching it as a system in which the elements of people, organizations, culture, practices, and technology constantly influence each other. We model these interactions as ``coordinating elements" that give rise to the social and political characteristics of a particular creative ML context, and call attention to three dynamic elements of creative ML whose interactions provide unique context for the social impact a particular system as: people, creative processes, and products. As creative assemblages are highly contextual, we present these as analytical concepts that computing researchers can adapt to better understand the functioning of a particular system or phenomena and identify intervention points to foster desired change. This paper contributes to theorizing interactions with AI in the context of art, and how these interactions shape the production of algorithmic art. View details
    Preview abstract Recent Text-to-Image (T2I) generation models such as Stable Diffusion and Imagen have made significant progress in generating high-resolution images based on text descriptions. However, many generated images still suffer from issues such as artifacts/implausibility, misalignment with text descriptions, and low aesthetic quality. Inspired by the success of Reinforcement Learning with Human Feedback (RLHF) for large language models, prior work collected human-provided scores as feedback on generated images and trained a reward model to improve the T2I generation. In this paper, we enrich the feedback signal by (i) marking image regions that are implausible or misaligned with the text, and (ii) annotating which keywords in the text prompt are not represented in the image. We collect such rich human feedback on 18K generated images and train a multimodal transformer to predict these rich feedback automatically. We show that the predicted rich human feedback can be leveraged to improve image generation, for example, by selecting high-quality training data to finetune and improve the generative models, or by creating masks with predicted heatmaps to inpaint the problematic regions. Notably, the improvements generalize to models (Muse) beyond those used to generate the images on which human feedback data were collected (Stable Diffusion variants). View details
    Shorts vs. Regular Videos on YouTube: A Comparative Analysis of User Engagement and Content Creation Trends
    Caroline Violot
    Tugrulcan Elmais
    Mathias Humbert
    ACM Web Science Conference 2024 (WEBSCI24) (2024)
    Preview abstract YouTube introduced the Shorts video format in 2021, allowing users to upload short videos that are prominently displayed on its website and app. Despite having such a large visual footprint, there are no studies to date that have looked at the impact Shorts introduction had on the production and consumption of content on YouTube. This paper presents the first comparative analysis of YouTube Shorts versus regular videos with respect to user engagement (i.e., views, likes, and comments), content creation frequency and video categories. We collected a dataset containing information about 70k channels that posted at least one Short, and we analyzed the metadata of all the videos (9.9M Shorts and 6.9M regular videos) they uploaded between January 2021 and December 2022, spanning a two-year period including the introduction of Shorts. Our longitudinal analysis shows that content creators consistently increased the frequency of Shorts production over this period, especially for newly-created channels, which surpassed that of regular videos. We also observe that Shorts target mostly entertainment categories, while regular videos cover a wide variety of categories. In general, Shorts attract more views and likes per view than regular videos, but attract less comments per view. However, Shorts do not outperform regular videos in the education and political categories as much as they do in other categories. Our study contributes to understanding social media dynamics, to quantifying the spread of short-form content, and to motivating future research on its impact on society. View details
    Preview abstract This is the seventh installment of the Developer Productivity for Humans column. This installment focuses on software quality: what it means, how developers see it, how we break it down into 4 types of quality, and the impact these have on each other. View details
    Preview abstract Browser fingerprinting is often associated with cross-site user tracking, a practice that many browsers (e.g., Safari, Brave, Edge, Firefox and Chrome) want to block. However, less is publicly known about its uses to enhance online safety, where it can provide an additional security layer against service abuses (e.g., in combination with CAPTCHAs) or during user authentication. To the best of our knowledge, no fingerprinting defenses deployed thus far consider this important distinction when blocking fingerprinting attempts, so they might negatively affect website functionality and security. To address this issue we make three main contributions. First, we propose and evaluate a novel machine learning-based method to automatically identify authentication pages (i.e. sign-in and sign-up pages). Our algorithm -- which relies on a hybrid unsupervised/supervised approach -- achieves 96-98% precision and recall on a large, manually-labelled dataset of 10,000 popular sites. Second, we compare our algorithm with other methods from prior works on the same dataset, showing that it significantly outperforms all of them (+83% F1-score). Third, we quantify the prevalence of fingerprinting scripts across sign-in and sign-up pages (9.2%) versus those executed on other pages (8.9%); while the rates of fingerprinting are similar, home pages and authentication pages differ in the third-party scripts they include and how often these scripts are labeled as tracking. We also highlight the substantial differences in fingerprinting behavior on login and sign-up pages. Our work sheds light on the complicated reality that fingerprinting is used to both protect user security and invade user privacy, and that this dual nature must be considered by fingerprinting mitigations. View details
    Preview abstract Private Everlasting Prediction (PEP), recently introduced by Naor et al. [2023], is a model for differentially private learning in which the learner never publicly releases a hypothesis. Instead, it provides a black-box access to a ``prediction oracle'' that can predict the labels of an endless stream of unlabeled examples drawn from the underlying distribution. Importantly, PEP provides privacy both for the initial training set and for the endless stream of classification queries. We present two conceptual modifications to the definition of PEP, as well as new constructions exhibiting significant improvements over prior work. Specifically, our contributions include: (1) Robustness: PEP only guarantees accuracy provided that all the classification queries are drawn from the correct underlying distribution. A few out-of-distribution queries might break the validity of the prediction oracle for future queries, even for future queries which are sampled from the correct distribution. We incorporate robustness against such poisoning attacks into the definition of PEP, and show how to obtain it. (2) Dependence of the privacy parameter delta in the time horizon: We present a relaxed privacy definition, suitable for PEP, that allows us to disconnect the privacy parameter delta from the number of total time steps T. This allows us to obtain algorithms for PEP whose sample complexity is independent from T, thereby making them "truly everlasting". This is in contrast to prior work where the sample complexity grows with polylog(T). (3) New constructions: Prior constructions for PEP exhibit sample complexity that is quadratic in the VC dimension of the target class. We present new constructions of PEP for axis-aligned rectangles and for decision-stumps, that exhibit sample complexity linear in the dimension (instead of quadratic). We show that our constructions satisfy very strong robustness properties. View details
    Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines
    Yuchen Li
    Alexandre Kirchmeyer
    Aashay Mehta
    Yilong Qin
    Andrej Risteski
    International Conference on Machine Learning (2024) (to appear)
    Preview abstract Autoregressive language models are the currently dominant paradigm for text generation, however they have some fundamental limitations that cannot be remedied by scale ---for example inherently sequential and unidirectional generation. While alternate classes of models have been explored, we have limited mathematical understanding of their fundamental power and limitations. In this paper we focus on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical framework for analyzing and improving such models which sheds light on questions of sample complexity and inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregressive models. We run careful ablation experiments to give recommendations on key design choices, and make fine-grained observations on the common error modes in connection with our theory. Our mathematical analyses and empirical observations characterize both potentials and limitations of this approach, and can be applied to future works on improving understanding and performance of GMLMs. View details
    Secure by Design at Google
    Google Security Engineering (2024)
    Preview abstract This whitepaper provides an overview of Google's approach to secure design. View details