Weightless Neural Networks: An Efficient Edge Inference Architecture
Abstract
Mainstream artificial neural network models, such as Deep Neural Networks (DNNs) are computation-heavy and energy-hungry. Weightless Neural Networks (WNNs) are natively built with RAM-based neurons and represent an entirely distinct type of neural network computing compared to DNNs. WNNs are extremely low-latency, low-energy, and suitable for efficient, accurate, edge inference. The WNN approach derives an implicit inspiration from the decoding process observed in the dendritic trees of biological neurons, making neurons based on Random Access Memories (RAMs) and/or Lookup Tables (LUTs) ready-to-deploy neuromorphic digital circuits. Since FPGAs are abundant in LUTs, LUT based WNNs are a natural fit for implementing edge inference in FPGAs.
WNNs has been demonstrated to be an energetically efficient AI model, both in software, as well as in hardware. For instance, the most recent DWN – Differential Weightless Neural Network – model demonstrates up to 135× reduction in energy costs in FPGA implementations compared to other multiplication-free approaches, such as binary neural networks (BNNs) and DiffLogicNet, up to 9% higher accuracy in deployments on constrained devices, and culminate in up to 42.8× reduction in circuit area for ultra-low-cost chip implementations. This tutorial will help participants understand how WNNs work, why WNNs were underdogs for such a long time, and be introduced to the most recent members of the WNN family, such as BTHOWeN , LogicWiSARD, COIN, ULEEN and DWN, and contrast to BNNs and LogicNets.
WNNs has been demonstrated to be an energetically efficient AI model, both in software, as well as in hardware. For instance, the most recent DWN – Differential Weightless Neural Network – model demonstrates up to 135× reduction in energy costs in FPGA implementations compared to other multiplication-free approaches, such as binary neural networks (BNNs) and DiffLogicNet, up to 9% higher accuracy in deployments on constrained devices, and culminate in up to 42.8× reduction in circuit area for ultra-low-cost chip implementations. This tutorial will help participants understand how WNNs work, why WNNs were underdogs for such a long time, and be introduced to the most recent members of the WNN family, such as BTHOWeN , LogicWiSARD, COIN, ULEEN and DWN, and contrast to BNNs and LogicNets.