Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10100 publications
Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
Aditya U Kale
Alastair Dennison
Alexander Martindale
An Wen Chan
Andrew Beam
Benjamin Ng
Cecilia S. Lee
Christopher Yau
David Moher
Gary Collins
Lauren Oakden-Rayner
Lavinia Ferrante di Ruffano
Melanie Calvert
Melissa D McCradden
Pearse Keane
Robert Golub
Samantha Cruz Rivera
Victoria Ngai
Xiaoxuan Liu
Nature Communications (2024)
Preview abstract
The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77–94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines.
View details
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
Babak Behsaz
Zachary Ryan Mccaw
Davin Hill
Robert Luben
Dongbing Lai
John Bates
Howard Yang
Tae-Hwi Schwantes-An
Yuchen Zhou
Anthony Khawaja
Andrew Carroll
Brian Hobbs
Michael Cho
Nature Genetics (2024)
Preview abstract
Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide association studies (GWAS). REGLE can uncover features not captured by existing expert-defined features and enables the creation of accurate disease-specific polygenic risk scores (PRSs) in datasets with very few labeled data. We apply REGLE to perform GWAS on respiratory and circulatory HDCD—spirograms measuring lung function and photoplethysmograms measuring blood volume changes. REGLE replicates known loci while identifying others not previously detected. REGLE are predictive of overall survival, and PRSs constructed from REGLE loci improve disease prediction across multiple biobanks. Overall, REGLE contain clinically relevant information beyond that captured by existing expert-defined features, leading to improved genetic discovery and disease prediction.
View details
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Preview abstract
Use of Text-to-Image models is expanding beyond generating generic objects, as they are increasingly being adopted by diverse global communities to create visual representations of their unique culture. Current T2I benchmarks primarily evaluate image-text alignment, aesthetics and fidelity of generations for complex prompts with generic objects, overlooking the critical dimension of cultural understanding. In this work, we address this gap by defining a framework to evaluate cultural competence of T2I models, and present a scalable approach to collect cultural artifacts unique to a particular culture from Knowledge Graphs and Large Language Models in tandem. We assess the ability of state-of-the-art T2I models to generate culturally faithful and realistic images across 8 countries and 3 cultural domains. Furthermore, we emphasize the importance of T2I models reflecting a culture's diversity and introduce cultural diversity as a novel metric for T2I evaluation, drawing inspiration from the Vendi Score. We introduce T2I-GCube, a first-of-its-kind benchmark for T2I evaluation. T2I-GCube includes cultural prompts, metrics, and cultural concept spaces, enabling comprehensive assessment of T2I models' cultural knowledge and diversity. Our evaluations reveal significant gaps in the cultural knowledge of existing models and provide valuable insights into the diversity of image outputs for under-specified prompts. By introducing a novel approach to evaluating cultural diversity and knowledge in T2I models, T2I-GCube will be instrumental in fostering the development of models with enhanced cultural competence.
View details
Preview abstract
Simple, sufficient explanations
furnished by short decision lists
can be useful for guiding stakeholder actions.
Unfortunately, this transparency can come at the expense
of the higher accuracy enjoyed by black box methods,
like deep nets.
To date, practitioners typically either (i) insist on the simpler model, forsaking accuracy; or (ii) insist on maximizing accuracy, settling for post-hoc explanations of dubious faithfulness.
In this paper, we propose a hybrid \emph{partially interpretable model} that represents a compromise between the two extremes.
In our setup, each input is first processed by a decision list that can either execute a decision or abstain,
handing off authority to the opaque model.
The key to optimizing the decision list is to optimally
trade off the accuracy of the composite system
against coverage (the fraction of the population
that receives explanations).
We contribute a new principled algorithm for constructing partially interpretable decision lists,
providing theoretical guarantees
addressing both interpretability and accuracy.
As an instance of our result, we prove
that when the optimal decision list has length $k$, coverage $c$, and $b$ mistakes,
our algorithm will generate a decision list
that has length no greater than $4k$,
coverage at least $c/2$,
and makes at most $4b$ mistakes.
Finally, we empirically validate the effectiveness of the new model.
View details
Preview abstract
Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks. Accurate and timely warnings are critical for mitigating flood risks, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that AI-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a 5-day lead time that is similar to or better than the reliability of nowcasts (0-day lead time) from a current state of the art global modeling system (the Copernicus Emergency Management Service Global Flood Awareness System). Additionally, we achieve accuracies over 5-year return period events that are similar to or better than current accuracies over 1-year return period events. This means that AI can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed in this paper was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.
View details
Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones
Tao Chen
Yongjie Yang
Xiuzhen Guo
Jie Xiong
Shangguan Longfei
MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
Preview abstract
The elderly over 65 accounts for 80% of COVID deaths in the United States. In response to the pandemic, the federal, state governments, and commercial insurers are promoting video visits, through which the elderly can access specialists at home over the Internet, without the risk of COVID exposure. However, the current video visit practice barely relies on video observation and talking. The specialist could not assess the patient's health conditions by performing auscultations.
This paper tries to address this key missing component in video visits by proposing Asclepius, a hardware-software solution that turns the patient's earphones into a stethoscope, allowing the specialist to hear the patient's fine-grained heart sound (i.e., PCG signals) in video visits. To achieve this goal, we contribute a low-cost plug-in peripheral that repurposes the earphone's speaker into a microphone and uses it to capture the patient's minute PCG signals from her ear canal. As the PCG signals suffer from strong attenuation and multi-path effects when propagating from the heart to ear canals, we then propose efficient signal processing algorithms coupled with a data-driven approach to de-reverberate and further correct the amplitude and frequency distortion in raw PCG receptions. We implement Asclepius on a 2-layer PCB board and follow the IRB protocol to evaluate its performance with 30 volunteers. Our extensive experiments show that Asclepius can effectively recover Phonocardiogram (PCG) signals with different types of earphones. The feedback from cardiologists also confirms the efficacy and efficiency of our system. PCG signal samples and benchmark results can be found at an anonymous link https://asclepius-system.github.io/
View details
Preview abstract
Knowledge-grounded dialogue generation is a challenging task because it requires satisfying two fundamental yet often competing constraints: being responsive in a manner that is specific to what the conversation partner has said while also being attributable to an underlying source document. In this work, we bring this trade-off between these two objectives (specificity and attribution) to light and ask the question: Can explicit content planning before the response generation help the model to address this challenge? To answer this question, we design a framework called PLEDGE, which allows us to experiment with various plan variables explored in prior work, supporting both metric-agnostic and metric-aware approaches. While content planning shows promise, our results on whether it can actually help to navigate this trade-off are mixed -- planning mechanisms that are metric-aware (use automatic metrics during training) are better at automatic evaluations but underperform in human judgment compared to metric-agnostic mechanisms. We discuss how this may be caused by over-fitting to automatic metrics and the need for future work to better calibrate these metrics towards human judgment. We hope the observations from our analysis will inform future work that aims to apply content planning in this context.
View details
Take it, Leave it, or Fix it: Measuring Productivity and Trust in Human-AI Collaboration
29th International Conference on Intelligent User Interfaces (IUI ’24), ACM, New York, NY, USA (2024)
Preview abstract
Although recent developments in generative AI have greatly enhanced the capabilities of conversational agents such as Google's Bard or OpenAI's ChatGPT, it's unclear whether the usage of these agents aids users across various contexts. To better understand how access to conversational AI affects productivity and trust, we conducted a mixed-methods, task-based user study, observing 76 software engineers (N=76) as they completed a programming exam with and without access to Bard. Effects on performance, efficiency, satisfaction, and trust vary depending on user expertise, question type (open-ended "solve" questions vs. definitive "search" questions), and measurement type (demonstrated vs. self-reported). Our findings include evidence of automation complacency, increased reliance on the AI over the course of the task, and increased performance for novices on “solve”-type questions when using the AI. We discuss common behaviors, design recommendations, and impact considerations to improve collaborations with conversational AI.
View details
Building Recommendation Systems using Lambda Architecture
Vipul Bharat Marlecha
Sreyashi Das
International Research Journal of Engineering and Technology (IRJET), Volume: 11 Issue: 05 | May 2024 (2024)
Preview abstract
This paper studies the recommendation systems that are typical to content discovery and personalized services like Netflix and Amazon. The study includes typical components of recommendation systems, what data and inputs are required to serve depending on the machine learning models used. We share how the recommendations leverage a mix of batch processing and streaming databases, and end with trends and potential future developments for recommendation systems
View details
Rambler: Supporting Writing With Speech via LLM-Assisted Gist Manipulation
Susan Lin
Jeremy Warner
J.D. Zamfirescu-Pereira
Matthew G Lee
Sauhard Jain
Michael Xuelin Huang
Bjoern Hartmann
Can Liu
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA
Preview abstract
Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge, and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneously spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies.
View details
Preview abstract
The InterPlanetary File System (IPFS) is on its way to becoming the backbone of the next generation of the web. However, it suffers from several performance bottlenecks, particularly on the content retrieval path, which are often difficult to debug. This is because content retrieval involves multiple peers on the decentralized network and the issue could lie anywhere in the network. Traditional debugging tools are insufficient to help web developers who face the challenge of slow loading websites and detrimental user experience. This limits the adoption and future scalability of IPFS.
In this paper, we aim to gain valuable insights into how content retrieval requests propagate within the IPFS network as well as identify potential performance bottlenecks which could lead to opportunities for improvement. We propose a custom tracing framework that generates and manages traces for crucial events that take place on each peer during content retrieval. The framework leverages event semantics to build a timeline of each protocol involved in the retrieval, helping developers pinpoint problems. Additionally, it is resilient to malicious behaviors of the peers in the decentralized environment.
We have implemented this framework on top of an existing IPFS implementation written in Java called Nabu. Our evaluation shows that the framework can identify network delays and issues with each peer involved in content retrieval requests at a very low overhead.
View details
CodeQueries: A Dataset of Semantic Queries over Code
Surya Prakash Sahu
Madhurima Mandal
Shikhar Bharadwaj
Aditya Kanade
Shirish Shevade
Innovations in Software Engineering (ISEC), ACM, Bangalore, India (2024)
Preview abstract
Developers often have questions about semantic aspects of code
they are working on, e.g., “Is there a class whose parent classes
declare a conflicting attribute?”. Answering them requires understanding code semantics such as attributes and inheritance relation
of classes. An answer to such a question should identify code spans
constituting the answer (e.g., the declaration of the subclass) as well
as supporting facts (e.g., the definitions of the conflicting attributes).
The existing work on question-answering over code has considered
yes/no questions or method-level context. We contribute a labeled
dataset, called CodeQueries, of semantic queries over Python code.
Compared to the existing datasets, in CodeQueries, the queries
are about code semantics, the context is file level and the answers
are code spans. We curate the dataset based on queries supported
by a widely-used static analysis tool, CodeQL, and include both
positive and negative examples, and queries requiring single-hop
and multi-hop reasoning.
To assess the value of our dataset, we evaluate baseline neural
approaches. We study a large language model (GPT3.5-Turbo) in
zero-shot and few-shot settings on a subset of CodeQueries. We
also evaluate a BERT style model (CuBERT) with fine-tuning. We
find that these models achieve limited success on CodeQueries.
CodeQueries is thus a challenging dataset to test the ability of
neural models, to understand code semantics, in the extractive
question-answering setting
View details
SkipWriter: LLM-Powered Abbreviated Writing on Tablets
Zheer Xu
Mukund Varma T
Proceedings of UIST 2024 (2024)
Preview abstract
Large Language Models (LLMs) may offer transformative opportunities for text input, especially for physically demanding modalities like handwriting. We studied a form of abbreviated handwriting by designing, developing and evaluating a prototype, named SkipWriter, that convert handwritten strokes of a variable-length, prefix- based abbreviation (e.g., “ho a y” as handwritten strokes) into the intended full phrase (e.g., “how are you” in the digital format) based
on preceding context. SkipWriter consists of an in-production hand-writing recognizer and a LLM fine-tuned on this skip-writing task. With flexible pen input, SkipWriter allows the user to add and revise prefix strokes when predictions don’t match the user’s intent. An user evaluation demonstrated a 60% reduction in motor movements with an average speed of 25.78 WPM. We also showed that this reduction is close to the ceiling of our model in an offline simulation.
View details
LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D Signals
Arjun Karpur
Guilherme Perrotta
Ricardo Martin-Brualla
Proc. 3DV'24 (2024) (to appear)
Preview abstract
Finding localized correspondences across different images of the same object is crucial to understand its geometry. In recent years, this problem has seen remarkable progress with the advent of deep learning-based local image features and learnable matchers. Still, learnable matchers often underperform when there exists only small regions of co-visibility between image pairs (i.e. wide camera baselines). To address this problem, we leverage recent progress in coarse single-view geometry estimation methods. We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks and enhances their capabilities by integrating noisy, estimated 3D signals to boost correspondence estimation. When integrating 3D signals into the matcher model, we show that a suitable positional encoding is critical to effectively make use of the low-dimensional 3D information. We experiment with two different 3D signals - normalized object coordinates and monocular depth estimates - and evaluate our method on large-scale (synthetic and real) datasets containing object-centric image pairs across wide baselines. We observe strong feature matching improvements compared to 2D-only methods, with up to +6% total recall and +28% precision at fixed recall. Additionally, we demonstrate that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs - up to 8.6% compared to the 2D-only approach.
View details