Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10132 publications
    Website Data Transparency in the Browser
    Sebastian Zimmeck
    Daniel Goldelman
    Owen Kaplan
    Logan Brown
    Justin Casler
    Judeley Jean-Charles
    Joe Champeau
    24th Privacy Enhancing Technologies Symposium (PETS 2024), PETS (to appear)
    Preview abstract Data collection by websites and their integrated third parties is often not transparent. We design privacy interfaces for the browser to help people understand who is collecting which data from them. In a proof of concept browser extension, Privacy Pioneer, we implement a privacy popup, a privacy history interface, and a watchlist to notify people when their data is collected. For detecting location data collection, we develop a machine learning model based on TinyBERT, which reaches an average F1 score of 0.94. We supplement our model with deterministic methods to detect trackers, collection of personal data, and other monetization techniques. In a usability study with 100 participants 82% found Privacy Pioneer easy to understand and 90% found it useful indicating the value of privacy interfaces directly integrated in the browser. View details
    FieldSwap: Data Augmentation for Effective Form-Like Document Extraction
    Seth Ebner
    IEEE 40th International Conference on Data Engineering (ICDE) (2024), pp. 4722-4732
    Preview abstract Extracting structured data from visually rich documents like invoices, receipts, financial statements, and tax forms is key to automating many business workflows. However, building extraction models in this domain often demands a large collection of high-quality training examples. To address this challenge, we introduce FieldSwap, a novel data augmentation technique specifically designed for such extraction problems. FieldSwap generates synthetic training examples by replacing key phrases indicative of one field with those corresponding to another. Our experiments on five diverse datasets demonstrate that incorporating FieldSwap-augmented data into the training process can enhance model performance by 1-11 F1 points, particularly when dealing with limited training data (10--100 documents). Additionally, we propose algorithms for automatically inferring key phrases from the training data. Our findings indicate that FieldSwap is effective regardless of whether key phrases are manually provided by human experts or inferred automatically. View details
    Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns
    Ariel Goldstein
    Avigail Grinstein-Dabush
    Haocheng Wang
    Zhuoqiao Hong
    Bobbi Aubrey
    Samuel A. Nastase
    Zaid Zada
    Eric Ham
    Harshvardhan Gazula
    Eliav Buchnik
    Werner Doyle
    Sasha Devore
    Patricia Dugan
    Roi Reichart
    Daniel Friedman
    Orrin Devinsky
    Adeen Flinker
    Uri Hasson
    Nature Communications (2024)
    Preview abstract Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language. To test this hypothesis, we densely record the neural activity patterns in the inferior frontal gyrus (IFG) of three participants using dense intracranial arrays while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation for each word (i.e., a brain embedding) in each patient. We demonstrate that brain embeddings in the IFG and the DLM contextual embedding space have common geometric patterns using stringent zero-shot mapping. The common geometric patterns allow us to predict the brain embedding of a given left-out word in IFG based solely on its geometrical relationship to other nonoverlapping words in the podcast. Furthermore, we show that contextual embeddings better capture the geometry of IFG embeddings than static word embeddings. The continuous brain embedding space exposes a vector-based neural code for natural language processing in the human brain. View details
    Preview abstract Automatic Speech Recognition (ASR) systems, despite significant advances in recent years, still have much room for improvement particularly in the recognition of disordered speech. Even so, erroneous transcripts from ASR models can help people with disordered speech be better understood, especially if the transcription doesn’t significantly change the intended meaning. Evaluating the efficacy of ASR for this use case requires a methodology for measuring the impact of transcription errors on the intended meaning and comprehensibility. Human evaluation is the gold standard for this, but it can be laborious, slow, and expensive. In this work, we tune and evaluate large language models for this task and find them to be a much better proxy for human evaluators than other metrics commonly used. We further present a case-study using the presented approach to assess the quality of personalized ASR models to make model deployment decisions and correctly set user expectations for model quality as part of our trusted tester program. View details
    Preview abstract In recent years, the growing adoption of autobidding has motivated the study of auction design with value-maximizing auto-bidders. It is known that under mild assumptions, uniform bid-scaling is an optimal bidding strategy in truthful auctions, e.g., Vickrey-Clarke-Groves auction (VCG), and the price of anarchy for VCG is 2. However, for other auction formats like First-Price Auction (FPA) and Generalized Second-Price auction (GSP), uniform bid-scaling may not be an optimal bidding strategy, and bidders have incentives to deviate to adopt strategies with non-uniform bid-scaling. Moreover, FPA can achieve optimal welfare if restricted to uniform bid-scaling, while its price of anarchy becomes 2 when non-uniform bid-scaling strategies are allowed. All these price of anarchy results have been focused on welfare approximation in the worst-case scenarios. To complement theoretical understandings, we empirically study how different auction formats (FPA, GSP, VCG) with different levels of non-uniform bid-scaling perform in an autobidding world with a synthetic dataset for auctions. Our empirical findings include: * For both uniform bid-scaling and non-uniform bid-scaling, FPA is better than GSP and GSP is better than VCG in terms of both welfare and profit; * A higher level of non-uniform bid-scaling leads to lower welfare performance in both FPA and GSP, while different levels of non-uniform bid-scaling have no effect in VCG. Our methodology of synthetic data generation may be of independent interest. View details
    Preview abstract Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare. View details
    Preview abstract Learned reweighting (LRW) approaches to supervised learning use an optimization criterion to assign weights for training instances, in order to maximize performance on a representative validation dataset. We pose and formalize the problem of optimized selection of the validation set used in LRW training, to improve classifier generalization. In particular, we show that using hard-to-classify instances in the validation set has both a theoretical connection to, and strong empirical evidence of generalization. We provide an efficient algorithm for training this meta-optimized model, as well as a simple train-twice heuristic for careful comparative study. We demonstrate that LRW with easy validation data performs consistently worse than LRW with hard validation data, establishing the validity of our meta-optimization problem. Our proposed algorithm outperforms a wide range of baselines on a range of datasets and domain shift challenges (Imagenet-1K, CIFAR-100, Clothing-1M, CAMELYON, WILDS, etc.), with ~1% gains using VIT-B on Imagenet. We also show that using naturally hard examples for validation (Imagenet-R / Imagenet-A) in LRW training for Imagenet improves performance on both clean and naturally hard test instances by 1-2%. Secondary analyses show that using hard validation data in an LRW framework improves margins on test data, hinting at the mechanism underlying our empirical gains. We believe this work opens up new research directions for the meta-optimization of meta-learning in a supervised learning context. View details
    Preview abstract Progress in human behavior modeling involves understanding both implicit, early-stage perceptual behavior, such as human attention, and explicit, later-stage behavior, such as subjective preferences or likes. Yet most prior research has focused on modeling implicit and explicit human behavior in isolation; and often limited to a specific type of visual content. We propose UniAR – a unified model of human attention and preference behavior across diverse visual content. UniAR leverages a multimodal transformer to predict subjective feedback, such as satisfaction or aesthetic quality, along with the underlying human attention or interaction heatmaps and viewing order. We train UniAR on diverse public datasets spanning natural images, webpages, and graphic designs, and achieve SOTA performance on multiple benchmarks across various image domains and behavior modeling tasks. Potential applications include providing instant feedback on the effectiveness of UIs/visual content, and enabling designers and content-creation models to optimize their creation for human-centric improvements. View details
    Efficient Language Model Architectures for Differentially Private Federated Learning
    Yanxiang Zhang
    Privacy Regulation and Protection in Machine Learning Workshop at ICLR 2024 (2024) (to appear)
    Preview abstract Cross-device federated learning (FL) is a technique that trains a model on data distributed across typically millions of edge devices without data ever leaving the devices. SGD is the standard client optimizer for on device training in cross-device FL, favored for its memory and computational efficiency. However, in centralized training of neural language models, adaptive optimizers are preferred as they offer improved stability and performance. In light of this, we ask if language models can be modified such that they can be efficiently trained with SGD client optimizers and answer this affirmatively. We propose a scale-invariant \emph{Coupled Input Forget Gate} (SI CIFG) recurrent network by modifying the sigmoid and tanh activations in the recurrent cell and show that this new model converges faster and achieves better utility than the standard CIFG recurrent model in cross-device FL in large scale experiments. We further show that the proposed scale invariant modification also helps in federated learning of larger transformer models. Finally, we demonstrate the scale invariant modification is also compatible with other non-adaptive algorithms. Particularly, our results suggest an improved privacy utility trade-off in federated learning with differential privacy. View details
    Preview abstract Referring Image Segmentation is a comprehensive task to segment an object referred by a textual query from an image. In nature, the level of difficulty in this task is affected by the existence of similar objects and the complexity of the referring expression. Recent RIS models still show a significant performance gap between easy and hard scenarios. We pose that the bottleneck exists in the data, and propose a simple but powerful data augmentation method, Negative-mined Mosaic Augmentation (NeMo). This method augments a training image into a mosaic with three other negative images carefully curated by a pretrained multimodal alignment model, e.g., CLIP, to make the sample more challenging. We discover that it is critical to properly adjust the difficulty level, neither too ambiguous nor too trivial. The augmented training data encourages the RIS model to recognize subtle differences and relationships between similar visual entities and to concretely understand the whole expression to locate the right target better. Our approach shows consistent improvements on various datasets and models, verified by extensive experiments. View details
    Preview abstract In this survey, we summarize recent developments in research fueled by the growing adoption of automated bidding strategies in online advertising. We explore the challenges and opportunities that have arisen as markets embrace this autobidding and cover a range of topics in this area, including bidding algorithms, equilibrium analysis and efficiency of common auction formats, and optimal auction design. View details
    DiffHuman: Probabilistic Photorealistic 3D Reconstruction of Humans
    Akash Sengupta
    Enric Corona
    Andrei Zanfir
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
    Preview abstract We present DiffHuman, a probabilistic method for photorealistic 3D human reconstruction from a single RGB image. Despite the ill-posed nature of this problem, most methods are deterministic and output a single solution, often resulting in a lack of geometric detail and blurriness in unseen or uncertain regions. In contrast, DiffHuman predicts a distribution over 3D reconstructions conditioned on an image, which allows us to sample multiple detailed 3D avatars that are consistent with the input image. DiffHuman is implemented as a conditional diffusion model that denoises partial observations of an underlying pixel-aligned 3D representation. In testing, we can sample a 3D shape by iteratively denoising renderings of the predicted intermediate representation. Further, we introduce an additional generator neural network that approximates rendering with considerably reduced runtime (55x speed up), resulting in a novel dual-branch diffusion framework. We evaluate the effectiveness of our approach through various experiments. Our method can produce diverse, more detailed reconstructions for the parts of the person not observed in the image, and has competitive performance for the surface reconstruction of visible parts. View details
    RewriteLM: An Instruction-Tuned Large LanguageModel for Text Rewriting
    Yun Zhu
    Simon Tong
    Lei Meng
    Proceedings of the AAAI Conference on Artificial Intelligence, 38(17), 18970-18980 (2024)
    Preview abstract In recent years, Large Language Models (LLMs) have demonstrated impressive zero-shot capabilities in text generation tasks expressed through natural language instructions. However, text rewriting is a challenging task, and unintended modifications can negatively impact the system's performance. To address this challenge, we introduce a novel benchmark for text rewriting that covers a wide variety of rewriting types expressed through natural language instructions. Unlike previous benchmarks, which were primarily focused on limited rewrite styles and sentence-level rewriting, our benchmark is specifically designed to facilitate open-ended rewriting of long-form text. Additionally, we present a strong baseline model, RewriteLM, which is an instruction-tuned large language model for text rewriting. The model is trained using supervised fine-tuning, reward training, and reinforcement learning. To minimize human intervention in the data collection process, we develop new data generation strategies: (1) utilizing high-quality, long-form edits from Wikipedia as our primary natural training data source, (2) generating a synthetic dataset that includes diverse edit types and non-Wiki domains using chain-of-thoughts and the capabilities of LLMs, and (3) employing human-designed heuristic rankers to generate preference data. Our experiments demonstrate the effectiveness of our proposed benchmark and baseline model, as well as the benefits of our data collection strategies in minimizing human intervention. View details
    Preview abstract Personalized recommendation systems are increasingly essential in our information-rich society, aiding users in navigating the expansive online realm. However, accurately modeling the diverse and dynamic interests of the users remains a formidable challenge. Existing user modeling methods, like Single-point User Representation (SUR) and Multi-point User Representation (MUR), have their limitations in terms of accuracy, diversity, computation cost, and adaptability. To overcome these challenges, we introduce a novel model, the Density-based User Representation (DUR), leveraging Gaussian Process Regression (GPR), which has not been extensively explored in multi-interest recommendation and retrieval. Our approach inherently captures user interest dynamics without manual tuning, provides uncertainty-awareness, and is more efficient than point-based representation methods. This paper outlines the development and implementation of GPR4DUR, details its evaluation protocols, and presents extensive analysis demonstrating its effectiveness and efficiency. Experiments on real-world offline datasets confirm our method’s adaptability and efficiency. Further online experiments simulating user behavior illuminate the benefits of our method in the exploration-exploitation trade-off by effectively utilizing model uncertainty. View details
    Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
    Atilla Kiraly
    Corbin Cunningham
    Ryan Najafi
    Jie Yang
    Chuck Lau
    Diego Ardila
    Scott Mayer McKinney
    Rory Pilgrim
    Mozziyar Etemadi
    Sunny Jansen
    Lily Peng
    Shravya Shetty
    Neeral Beladia
    Krish Eswaran
    Radiology: Artificial Intelligence (2024)
    Preview abstract Lung cancer is the leading cause of cancer death world-wide with 1.8 million deaths in 20201. Studies have concluded that low-dose computed tomography lung cancer screening can reduce mortality by up to 61%2 and updated 2021 US guidelines expanded eligibility. As screening efforts rise, AI can play an important role, but must be unobtrusively integrated into existing clinical workflows. In this work, we introduce a state-of-the-art, cloud-based AI system providing lung cancer risk assessments without requiring any user input. We demonstrate its efficacy in assisting lung cancer screening under both US and Japanese screening settings using different patient populations and screening protocols. Technical improvements over a previously described system include a focus on earlier cancer detection for improved accuracy, introduction of an effective assistive user interface, and a system designed to integrate into typical clinical workflows. The stand-alone AI system was evaluated on 3085 individuals achieving area under the curve (AUC) scores of 91.7% (95%CI [89.6, 95.2]), 93.3% (95%CI [90.2, 95.7]), and 89.1% (95%CI [77.7, 97.3]) on three datasets (two from US and one from Japan), respectively. To evaluate the system’s assistive ability, we conducted two retrospective multi-reader multi-case studies on 627 cases read by experienced board certified radiologists (average 20 years of experience [7,40]) using local PACS systems in the respective US and Japanese screening settings. The studies measured the reader’s level of suspicion (LoS) and categorical responses for scores and management recommendations under country-specific screening protocols. The radiologists’ AUC for LoS increased with AI assistance by 2.3% (95%CI [0.1-4.5], p=0.022) for the US study and by 2.3% (95%CI [-3.5-8.1], p=0.179) for the Japan study. Specificity for recalls increased by 5.5% (95%CI [2.7-8.5], p<0.0001) for the US and 6.7% (95%CI [4.7-8.7], p<0.0001) for the Japan study. No significant reduction in other metrics occured. This work advances the state-of-the-art in lung cancer detection, introduces generalizable interface concepts that can be applicable to similar AI applications, and demonstrates its potential impact on diagnostic AI in global lung cancer screening with results suggesting a substantial drop in unnecessary follow-up procedures without impacting sensitivity. View details