Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10498 publications
DORA 2025 State of AI-assisted Software Development Report
Derek DeBellis
Matt Beane
Edward Fraser
Ben Good
Eirini Kalliamvakou
Gene Kim
Daniella Villalba
DORA, Google (2025)
Preview abstract
In 2025, the central question for technology leaders is no longer if they should adopt AI, but how to realize its value. DORA’s research includes more than 100 hours of qualitative data and survey responses from nearly 5,000 technology professionals from around the world. The research reveals a critical truth: AI’s primary role in software development is that of an amplifier. It magnifies the strengths of high-performing organizations and the dysfunctions of struggling ones.
View details
Preview abstract
We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient.
View details
SMaCk: Efficient Instruction Cache Attacks via Self-Modifying Code Conflicts
Seonghun Son
Berk Gulmezoglu
ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) (2025)
Preview abstract
Self-modifying code (SMC) allows programs to alter their own instructions, optimizing performance and functionality on x86 processors. Despite its benefits, SMC introduces unique microarchitectural behaviors that can be exploited for malicious purposes. In this paper, we explore the security implications of SMC by examining how specific x86 instructions affecting instruction cache lines lead to measurable timing discrepancies between cache hits and misses. These discrepancies facilitate refined cache attacks, making them less noisy and more effective. We introduce novel attack techniques that leverage these timing variations to enhance existing methods such as Prime+Probe and Flush+Reload. Our advanced techniques allow adversaries to more precisely attack cryptographic keys and create covert channels akin
to Spectre across various x86 platforms. Finally, we propose a dynamic detection methodology utilizing hardware performance counters to mitigate these enhanced threats.
View details
"It is important to consult" a linguist: Verb-Argument Constructions in ChatGPT and human experts' medical and financial advice
Chris Stewart
Alistair Windsor
J. Elliott Casal
PLOS One (2025)
Preview abstract
This paper adopts a Usage-Based Construction Grammar perspective to compare human- and AI-generated language, focusing on Verb-Argument Constructions (VACs) as a lens for analysis. Specifically, we examine solicited advice texts in two domains—Finance and Medicine—produced by humans and ChatGPT across different GPT models (3.5, 4, and 4o) and interfaces (3.5 Web vs. 3.5 API). Our findings reveal broad consistency in the frequency and distribution of the most common VACs across human- and AI-generated texts, though ChatGPT exhibits a slightly higher reliance on the most frequent constructions. A closer examination of the verbs occupying these constructions uncovers significant differences in the meanings conveyed, with a notable growth away from human-like language production in macro level perspectives (e.g., length) and towards humanlike verb-VAC patterns with newer models. These results underscore the potential of VACs as a powerful tool for analyzing AI-generated language and tracking its evolution over time.
View details
Score-based Causal Representation Learning: Linear and General Transformations
Abhishek Kumar
Emre Acarturk
Ali Tajer
Burak Varici
Journal of Machine Learning Research (JMLR) 2025 (2025)
Preview abstract
This paper addresses intervention-based causal representation learning (CRL) under a general
nonparametric latent causal model and an unknown transformation that maps the latent variables to the observed variables. Linear and general transformations are investigated. The paper addresses both the identifiability and achievability aspects. Identifiability refers to determining algorithm-agnostic conditions that ensure recovering the true latent causal variables and the latent causal graph underlying them. Achievability refers to the algorithmic aspects and addresses designing algorithms that achieve identifiability guarantees. By drawing novel connections between score functions (i.e., the gradients of the logarithm of density functions) and CRL, this paper designs a score-based class of algorithms that ensures both identifiability and achievability. First, the paper focuses on linear transformations and shows that one stochastic hard intervention per node suffices to guarantee identifiability. It also provides partial identifiability guarantees for soft interventions, including identifiability up to ancestors for general causal models and perfect latent graph recovery for sufficiently non-linear causal models. Secondly, it focuses on general transformations and shows that two stochastic hard interventions per node suffice for identifiability. Notably, one does not need to know which pair of interventional environments have the same node intervened.
View details
Databases in the Era of Memory-Centric Computing
Yannis Chronis
Anastasia Ailamaki
Lawrence Benson
Jana Gičeva
Eric Seldar
Lisa Wu Wills
2025
Preview abstract
The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud.
View details
User-Centered Delivery of AI-Powered Health Care Technologies in Clinical Settings: Mixed Methods Case Study
Randall Brandt
Hien Brown
Christine Silva
JMIR Human Factors (2025)
Preview abstract
Background:
Providers spend a large percentage of their day using electronic health record (EHR) technology and frequently report frustration when EHR tasks are time-consuming and effortful. To solve these challenges, artificial intelligence (AI)–based enhancements to EHR technology are increasingly being deployed. However, AI-based implementations for EHR features often lack user-centered evaluation.
Objective:
This study evaluates, using a user-centered approach, the implementation of an AI-powered search and clinical discovery tool within an EHR system.
Methods:
We conducted a mixed methods study consisting of interviews, observations, and surveys for 5 months.
Results:
High adoption rates for the AI-based features (163/176, 93% users after 3 months) and significant increases across key metrics, including user satisfaction (U=49; P<.001) and perception of time saved (U=49; P<.001), demonstrated that the AI-based features were not only successfully integrated into various clinical workflows but also improved the user experience for clinicians.
Conclusions:
Our results underscore the feasibility and effectiveness of using a user-centered approach for the deployment of clinical AI tools. High adoption rates and positive user experiences were driven by our user-centered research program, which emphasized close collaboration with users, rapid incorporation of feedback, and tailored user training. This study program can be used as a starting framework for the design and integration of human-centered research methods for AI tool deployment in clinical settings.
View details
Record Number of Members Visit U.S. Congress to Talk Tech Policy
IEEE Spectrum (2025)
Preview abstract
This IEEE Spectrum article reflects on advocacy for U.S. technological leadership during my Congressional visit through IEEE-USA. Leading an expert group of other distinguished IEEE members, we urged lawmakers to support critical initiatives. Key priorities included sustained funding for federal research institutions like NIST, NASA, and the NSF, reauthorizing the SBIR/STTR programs vital for small business innovation, and passing the CREATE AI Act to democratize AI resources by establishing the National AI Research Resource (NAIRR).
We also emphasized strengthening the STEM talent pipeline through the CHIPS and Science Act and expanding high-skilled immigrant visas. We highlighted rapid AI advancements, such as autonomous vehicles, the surge in FDA-approved AI based medical devices, as underscoring the need for these strategic investments and policy actions. The article conveys a sense of urgency, calling for concrete congressional action to ensure the U.S. maintains its technological edge while also sharing my personal experiences.
View details
Improving simulation-based origin-destination demand calibration using sample segment counts data
Arwa Alanqary
Yechen Li
The 12th Triennial Symposium on Transportation Analysis conference (TRISTAN XII), Okinawa, Japan (2025)
Preview abstract
This paper introduces a novel approach to demand estimation that utilizes partial observations of segment-level track counts. Building on established simulation-based demand estimation methods, we present a modified formulation that integrates sample track counts as a regularization term. This approach effectively addresses the underdetermination challenge in demand estimation, moving beyond the conventional reliance on a prior OD matrix. The proposed formulation aims to preserve the distribution of the observed track counts while optimizing the demand to align with observed path-level travel times. We tested this approach on Seattle's highway network with various congestion levels. Our findings reveal significant enhancements in the solution quality, particularly in accurately recovering ground truth demand patterns at both the OD and segment levels.
View details
Beyond the Phone: Exploring Context-aware Interaction Between Mobile andMixed Reality Devices
Fengyuan Zhu
Daniel Kalmar
Mahdi Tayarani
2025
Preview abstract
Despite the surge in popularity of virtual reality (VR), mobile phones remain the primary medium for accessing digital content, offering both privacy and portability. This short paper presents Beyond the Phone, a novel framework that enhances mobile phones in VR with context-aware controls and spatial augmentation. We first establish a comprehensive design space through brainstorming and iterative discussions with VR experts. We then develop a proof-of-concept system that analyzes UI layouts to offer context-aware controls and spatial augmentation, targeting six key application areas within our design space. Finally, we demonstrate that our system can effectively adapt to a broad spectrum of applications at runtime, and discuss future directions with reviews with seven experts.
View details
Preview abstract
Despite the advent of legislation such as the General Data Protection Regulation (GDPR) with its associated "Right to be Forgotten" (RTBF), few, if any, studies have measured user reactions to realistic edge cases with public-interest content. Surveying both users covered by and excluded from RTBF, this vignette-based survey experiment sought to better understand how users think of delisting content from search engine results and what factors influence user perceptions. While leaving information accessible in search engine results generally leads to warmer feelings towards those search engines than delisting it, we find that users do prefer different outcomes
depending on contextual elements specific to given cases. We also find that whether a country has active RTBF legislation does seem to be associated with both knowledge and attitudes about RTBF, but is unlikely to explain all of it. These results indicate a complex context around removing public-interest content from search engines’ results; it is essential that experts sensitive to local context perform the review in order to ensure that removal requests are handled in a way that meets users’ expectations.
View details
Preview abstract
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
View details
Shadow Hamiltonian Simulation
Rolando Somma
Robbie King
Tom O'Brien
Nature Communications, 16 (2025), pp. 2690
Preview abstract
Simulating quantum dynamics is one of the most important applications of quantum computers. Traditional approaches for quantum simulation involve preparing the full evolved state of the system and then measuring some physical quantity. Here, we present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the "shadow state". The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest, and it evolves according to its own Schrödinger equation. This evolution can be simulated on a quantum computer efficiently under broad conditions. Applications of this approach to quantum simulation problems include simulating the dynamics of exponentially large systems of free fermions or free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. These simulations are hard for classical methods and also for traditional quantum approaches, as preparing the full states would require exponential resources. Shadow Hamiltonian simulation can also be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture.
View details
Fast electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
arXiv:2502.15882 (2025)
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst.
View details