Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10795 publications
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
Obtaining accurate representations of the eigenstates of an array of coupled superconducting qubits is a crucial step in the design of circuit quantum electrodynamics (circuit-QED)-based quantum processors. However, exact diagonalization of the device Hamiltonian is challenging for system sizes beyond tens of qubits. Here, we employ a tensor network method based on the density matrix renormalization group (DMRG) algorithm, DMRG-X, to efficiently obtain localized eigenstates of a 2D transmon array without the need to first compute lower-energy states. We also introduce MTDMRG-X, a new algorithm that combines DMRG-X with multi-target DMRG to efficiently compute excited states even in regimes with strong eigenstate hybridization. We showcase the use of these methods for the analysis of long-range couplings in a multi-transmon Hamiltonian including qubits and couplers, and we discuss eigenstate localization. These developments facilitate the design and parameter optimization of large-scale superconducting quantum processors.
View details
Probing non-equilibrium topological order on a quantum processor
Melissa Will
Tyler Cochran
Bernhard Jobst
Norhan Eassa
Michael Knap
Adam Gammon-Smith
Frank Pollmann
Nature, 645 (2025), 348–353
Preview abstract
Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter—they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state on an array of superconducting qubits. We image the characteristic dynamics of its chiral edge modes and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details
GovSCH: An Open-Source Schema for Authoring Cybersecurity and AI Governance Documents
New America, New America (2025) (to appear)
Preview abstract
The increasing complexity of cybersecurity and artificial intelligence (AI) executive orders, frameworks, and policies has made translating high-level directives into actionable implementation a persistent challenge. Policymakers, framework authors, and engineering teams often lack a unified approach for interpreting and operationalizing these documents, resulting in inefficiencies, misalignment, and delayed compliance. While existing standards such as the Open Security Controls Assessment Language (OSCAL) address control-level specifications, no standardized, machine-readable format exists for authoring and structuring high-level governance documents. This gap hinders collaboration across disciplines and obscures critical directives’ underlying intent and rationale.
This report introduces Governance Schema (GovSCH), an open-source schema designed to standardize the authoring and translation of cybersecurity and AI governance documents into a consistent, machine-readable format. By analyzing prior executive orders, regulatory frameworks, and policies, GovSCH identifies common structures and authoring practices to create an interoperable model that bridges policymakers, regulatory framework authors, and engineering teams. This approach enables more precise articulation of policy intent, improves transparency, and accelerates the technical implementation of regulations. Ultimately, GovSCH aims to enhance collaboration, standardization, and efficiency in cybersecurity and AI governance. To explore the schema structure, documentation, and examples, please visit the project’s GitHub repository: newamericafoundation/GovSCH.
View details
Generating Dialogues from Egocentric Instructional Videos for Task Assistance: Dataset, Method and Benchmark
Lavisha Aggarwal
Vikas Bahirwani
Lin Li
Andrea Colaco
2025
Preview abstract
Many everyday tasks ranging from fixing appliances, cooking recipes to car maintenance require expert knowledge, especially when tasks are complex and multi-step. Despite growing interest in AI agents, there is a scarcity of dialogue-video datasets grounded for real world task assistance. In this paper, we propose a simple yet effective approach that transforms single-person instructional videos into task-guidance two-person dialogues, aligned with fine grained steps and video-clips. Our fully automatic approach, powered by large language models, offers an efficient alternative to the substantial cost and effort required for manual data collection. Using this technique, we build HowToDIV, a large-scale dataset containing 507 conversations, 6636 question-answer pairs and 24 hours of videoclips across diverse tasks in cooking, mechanics, and planting. Each session includes multi-turn conversation where an expert teaches a novice user how to perform a task step by step, while observing user's surrounding through a camera and microphone equipped wearable device. We establish the baseline benchmark performance on HowToDIV dataset through Gemma-3 model, for future research on this new task of dialogues for procedural-task assistance. Our dataset and code are publicly available at our project page: https://github.com/google/howtodiv.
View details
Why all roads don't lead to Rome: Representation geometry varies across the human visual cortical hierarchy
Zahraa Chorghay
Arna Ghosh
Shahab Bakhtiari
Blake Richards
(2025) (to appear)
Preview abstract
Biological and artificial intelligence systems navigate the fundamental efficiency-robustness tradeoff for optimal encoding, i.e., they must efficiently encode numerous attributes of the input space while also being robust to noise. This challenge is particularly evident in hierarchical processing systems like the human brain. With a view towards understanding how systems navigate the efficiency-robustness tradeoff, we turned to a population geometry framework for analyzing representations in the human visual cortex alongside artificial neural networks (ANNs). In the ventral visual stream, we found general-purpose, scale-free representations characterized by a power law-decaying eigenspectrum in most but not areas. Of note, certain higher-order visual areas did not have scale-free representations, indicating that scale-free geometry is not a universal property of the brain. In parallel, ANNs trained with a self-supervised learning objective also exhibited scale-free geometry, but not after fine-tuning on a specific task. Based on these empirical results and our analytical insights, we posit that a system’s representation geometry is not a universal property and instead depends upon the computational objective.
View details
Google’s Approach to Protecting Privacy in the Age of AI
Google, , 1600 Amphitheatre Parkway, Mountain View, CA, 94043 (2025)
Preview abstract
AI products introduce new privacy challenges. Finding the right privacy solution is central to developing innovative products, especially as AI models increasingly handle user data. In this paper, we propose a framework to reason about privacy in AI, and discuss how Privacy Enhancing Technologies (PETs) enable novel user experiences by reducing privacy risks in the AI development lifecycle. We argue that privacy protections are not inherently at odds with utility; in contrast, we discuss how building privacy into products from the start can create better, more trustworthy experiences for everyone.
View details
Deletion Robust Non-Monotone Submodular Maximization over Matroids
Paul Duetting
Federico Fusco
Ashkan Norouzi Fard
Journal of Machine Learning Research, 26 (2025), pp. 1-28
Preview abstract
Maximizing a submodular function is a fundamental task in machine learning and in this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(4.597+O(\eps))$-approximation algorithm with summary size $O( \frac{k+d}{\eps^2}\log \frac{k}{\eps})$ that is improved to a $(3.582+O(\eps))$-approximation with $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$ summary size when the objective is monotone. In the streaming setting we provide a $(9.435 + O(\eps))$-approximation algorithm with summary size and memory $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$; the approximation factor is then improved to $(5.582+O(\eps))$ in the monotone case.
View details
Lorax: A Multitask, Multilingual Benchmark Suite for 20 Indonesian Languages
Trevor Cohn
Alham Fikri Aji
2025
Preview abstract
As one of the world's most populous countries, with 700 languages spoken, Indonesia is behind in terms of NLP progress. We introduce Lorax, a benchmark that focuses on low-resource languages of Indonesia and covers 6 diverse tasks: reading comprehension, open-domain QA, language inference, causal reasoning, translation, and cultural QA. We cover 20 languages, with the addition of 2 politeness registers for 3 of the languages. As a benchmark is essential to the progress itself, this data should provide a useful contribution to the community. We benchmark a diverse set of multilingual and region-focused LLMs and found that this benchmark is challenging. We note a visible discrepancy between performance in Indonesia and other languages, especially the low-resource ones. There is no clear lead when using a region-specific model as opposed to the general multilingual model. Lastly, we show that a change in register affects model performance, especially with registers not commonly found in social media, such as high-level politeness 'Krama' Javanese.
View details
PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving
Mihir Parmar
Chitta Baral
Mingyang Ling
2025
Preview abstract
Recently, decomposing complex problems into simple subtasks--a crucial part of human-like natural planning--to solve the given problem has significantly boosted the performance of large language models (LLMs). However, leveraging such planning structures during post-training to boost the performance of smaller open-source LLMs remains underexplored. Motivated by this, we introduce Plan-Tuning, a unified post-training framework that (i) distills synthetic task decompositions (termed “planning trajectories”) from large-scale LLMs and (ii) fine-tunes smaller models via supervised and reinforcement-learning objectives designed to mimic these planning processes to improve complex reasoning. On GSM8k and the MATH benchmarks, plan-tuned models outperform strong baselines by an average ~7%. Furthermore, plan-tuned models show better generalization capabilities on out-of-domain datasets, with average ~10% and ~12% performance improvements on OlympiadBench and AIME 2024, respectively. Our detailed analysis demonstrates how planning trajectories improves complex reasoning capabilities, showing that Plan-Tuning is an effective strategy for improving task-specific performance of smaller LLMs.
View details
LLM-based Lossless Text Simplification and its Effect on User Comprehension and Mental Load
Theo Guidroz
Diego Ardila
Jimmy Li
Adam Mansour
Paul Jhun
Nina Gonzalez
Xiang Ji
Mike Sanchez
Sujay Kakarmath
Miguel Ángel Garrido
Faruk Ahmed
Divyansh Choudhary
Jay Hartford
Georgina Xu
Henry Serrano
Yifan Wang
Jeff Shaffer
Eric (Yifan) Cao
Sho Fujiwara
Peggy Bui
arXiv (2025)
Preview abstract
Information on the web, such as scientific publications and Wikipedia, often surpasses users' reading level. To help address this, we used a self-refinement approach to develop a LLM capability for minimally lossy text simplification. To validate our approach, we conducted a randomized study involving 4563 participants and 31 texts spanning 6 broad subject areas: PubMed (biomedical scientific articles), biology, law, finance, literature/philosophy, and aerospace/computer science. Participants were randomized to viewing original or simplified texts in a subject area, and answered multiple-choice questions (MCQs) that tested their comprehension of the text. The participants were also asked to provide qualitative feedback such as task difficulty. Our results indicate that participants who read the simplified text answered more MCQs correctly than their counterparts who read the original text (3.9% absolute increase, p<0.05). This gain was most striking with PubMed (14.6%), while more moderate gains were observed for finance (5.5%), aerospace/computer science (3.8%) domains, and legal (3.5%). Notably, the results were robust to whether participants could refer back to the text while answering MCQs. The absolute accuracy decreased by up to ~9% for both original and simplified setups where participants could not refer back to the text, but the ~4% overall improvement persisted. Finally, participants' self-reported perceived ease based on a simplified NASA Task Load Index was greater for those who read the simplified text (absolute change on a 5-point scale 0.33, p<0.05). This randomized study, involving an order of magnitude more participants than prior works, demonstrates the potential of LLMs to make complex information easier to understand. Our work aims to enable a broader audience to better learn and make use of expert knowledge available on the web, improving information accessibility.
View details
Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Zhanke Zhou
Xuan Li
Zhaocheng Zhu
Michael Galkin
Xiao Feng
Sanmi Koyejo
Jian Tang
Bo Han
Reasoning and Planning for LLMs @ ICLR 2025
Preview abstract
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts-the first visualization tool for users to inspect the reasoning paths of chain-of-thought and its derivatives on any multi-choice dataset. Specifically, we represent the states in a reasoning path as feature vectors that quantify their distances to all answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative analysis shows that the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt our tool to a neural model that predicts any property they observe. We showcase this advantage by adapting our tool to a lightweight verifier, which significantly improves reasoning by evaluating the correctness of reasoning paths.
View details
AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques
Aman Raj
IEEE Compsac 2025 (2025)
Preview abstract
Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response.
View details