Xavi Gonzalvo

Xavi Gonzalvo

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Modern deep learning algorithms use variations of gradient descent as their main learning methods. Gradient descent can be understood as the simplest Ordinary Differential Equation (ODE) solver; namely, the Euler method applied to the gradient flow differential equation. Since Euler, many ODE solvers have been devised that follow the gradient flow equation more precisely and more stably. Runge-Kutta (RK) methods provide a family of very powerful explicit and implicit high-order ODE solvers. However, these higher-order solvers have not found wide application in deep learning so far. In this work, we evaluate the performance of higher-order RK solvers when applied in deep learning, study their limitations, and propose ways to overcome these drawbacks. In particular, we explore how to improve their performance by naturally incorporating key ingredients of modern neural network optimizers such as preconditioning, adaptive learning rates, and momentum. View details
    Preview abstract A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving steering vectors from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to implicit weight updates (Dherin et al., 2025), we generalize this theory to deep, multi-block transformers. We show how the information contained in any chunk of a user prompt is represented and composed internally through weight vectors and weight matrices. We then derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector- and matrix-based model editing techniques and offer a direct, computationally-grounded method for transmuting textual input into reusable weight updates. View details
    Preview abstract Despite exceptional achievements, training neural networks remains computationally expensive and is often plagued by instabilities that can degrade convergence. While learning rate schedules can help mitigate these issues, finding optimal schedules is time-consuming and resource-intensive. This work explores theoretical issues concerning training stability in the constant-learning-rate (i.e., without schedule) and small-batch-size regime. Surprisingly, we show that the order of gradient updates affects stability and convergence in gradient-based optimizers. We illustrate this new line of thinking using backward-SGD, which processes batch gradient updates like SGD but in reverse order. Our theoretical analysis shows that in contractive regions (e.g., around minima) backward-SGD converges to a point while the standard forward-SGD generally only converges to a distribution. This leads to improved stability and convergence which we demonstrate experimentally. While full backward-SGD is computationally intensive in practice, it highlights opportunities to exploit reverse training dynamics (or more generally alternate iteration orders) to improve training. To our knowledge, this represents a new and unexplored avenue in deep learning optimization. View details
    Preview abstract Despite exceptional achievements, training neural networks remains computationally expensive and is often plagued by instabilities that can degrade convergence. While learning rate schedules can help mitigate these issues, finding optimal schedules is time-consuming and resource-intensive. This work explores theoretical issues concerning training stability in the constant-learning-rate (i.e., without schedule) and small-batch-size regime. Surprisingly, we show that the order of gradient updates affects stability and convergence in gradient-based optimizers. We illustrate this new line of thinking using backward-SGD, which processes batch gradient updates like SGD but in reverse order. Our theoretical analysis shows that in contractive regions (e.g., around minima) backward-SGD converges to a point while the standard forward-SGD generally only converges to a distribution. This leads to improved stability and convergence which we demonstrate experimentally. While full backward-SGD is computationally intensive in practice, it highlights opportunities to exploit reverse training dynamics (or more generally alternate iteration orders) to improve training. To our knowledge, this represents a new and unexplored avenue in deep learning optimization. View details
    Preview abstract One of the most striking features of Large Language Models (LLMs) is their ability to learn in-context. Namely at inference time an LLM is able to learn new patterns without any additional weight update when these patterns are presented in the form of examples in the prompt, even if these patterns were not seen during training. The mechanisms through which this can happen are still largely unknown. In this work, we show that the stacking of a self-attention layer with an MLP, allows the transformer block to implicitly modify the weights of the MLP layer according to the context. We argue through theory and experimentation that this simple mechanism may be the reason why LLMs can learn in-context and not only during training. Specifically, we show how a transformer block implicitly transforms a context into a low-rank weight-update of its MLP layer. View details
    Preview abstract In recent years, deep learning has made remarkable progress in a wide range of domains, with a particularly notable impact on natural language processing tasks. One of the challenges associated with training deep neural networks is the need for large amounts of computational resources and time. In this paper, we present Deep Fusion, an efficient approach to network training that leverages pre-trained initializations of smaller networks. We show that Deep Fusion accelerates the training process, reduces computational requirements, and leads to improved generalization performance on a variety of NLP tasks and T5 model sizes. Our experiments demonstrate that Deep Fusion is a practical and effective approach to reduce the training time and resource consumption while maintaining, or even surpassing, the performance of traditional training methods. View details
    Preview abstract Modern deep learning algorithms use variations of gradient descent as their main learning methods. Gradient descent can be understood as the simplest Ordinary Differential Equation (ODE) solver; namely, the Euler method applied to the gradient flow differential equation. Since Euler, many ODE solvers have been devised that follow the gradient flow equation more precisely and more stably. Runge-Kutta (RK) methods provide a family of very powerful explicit and implicit high-order ODE solvers. However, these higher-order solvers have not found wide application in deep learning so far. In this work, we evaluate the performance of higher-order RK solvers when applied in deep learning, study their limitations, and propose ways to overcome these drawbacks. In particular, we explore how to improve their performance by naturally incorporating key ingredients of modern neural network optimizers such as preconditioning, adaptive learning rates, and momentum. View details
    Preview abstract A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving ``steering vectors'' from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to implicit weight updates Dherin et al. (2025), we generalize this theory to deep, multi-block transformers. We show how the information contained in any chunk of a user prompt is represented and composed internally through virtual weight vectors and virtual weight matrices. We then derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector- and matrix-based model editing techniques and offer a direct, computationally-grounded method for transforming textual input into reusable weight updates. View details
    Preview abstract Recent breakthroughs and successful deployment of large language and vision models in a constrained environment predominantly follow a two phase approach. First, large models are trained to achieve peak performance, followed by a model shrinking method to meet hardware constraints; Methods like distillation, compression or quantization help leverage the highly performant large models to induce smaller performant ones. Formally, this can be seen as the problem of identifying an optimal model of size n from a larger model of size $k \cdot n$, where $k > 1$ is the overparameterization factor. This paper explores the hypothesis that a single training run can simultaneously train a larger model for performance and while simultaneously deriving a smaller model for deployment. Our contribution is an effective architectural change, namely, {\em Majority Kernels} that is compatible with the main standard architectures such as multi-layer perceptrons (MLPs), Residual networks (ResNets), and Transformers. We demonstrate that applying our technique can simulate the training of overparameterized models resulting in performance gains across architectures and tasks while maintening the inference performance consistent. Furthermore, our approach adds minimal overhead to the cost incurred (wall clock time) at training time. The proposed approach shows strong performance on a wide variety of datasets and models, even outperforming strong baselines such as combinatorial optimization methods based on submodular optimization. View details
    AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles
    Charles Weill
    Vitaly Kuznetsov
    Scott Yang
    Scott Yak
    Hanna Mazzawi
    Eugen Hotaj
    Ghassen Jerfel
    Vladimir Macko
    Ben Adlam
    (2019)
    Preview abstract AdaNet is a lightweight TensorFlow-based (Abadi et al., 2015) framework for automatically learning high-quality ensembles with minimal expert intervention. Our framework is inspired by the AdaNet algorithm (Cortes et al., 2017) which learns the structure of a neural network as an ensemble of subnetworks. We designed it to: (1) integrate with the existing TensorFlow ecosystem, (2) offer sensible default search spaces to perform well on novel datasets, (3) present a flexible API to utilize expert information when available, and (4) efficiently accelerate training with distributed CPU, GPU, and TPU hardware. The code is open-source and available at https://github.com/tensorflow/adanet. View details
    ×