Taedong Yun
Authored Publications
Sort By
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
Babak Behsaz
Zachary Ryan Mccaw
Davin Hill
Robert Luben
Dongbing Lai
John Bates
Howard Yang
Tae-Hwi Schwantes-An
Yuchen Zhou
Anthony Khawaja
Andrew Carroll
Brian Hobbs
Michael Cho
Nature Genetics (2024)
Evaluating unsupervised disentangled representations for genomic discovery and disease risk prediction
ICML Workshop on Computational Biology 2023 (2023)
Improving variant calling using population data and deep learning
Nae-Chyun Chen
Sidharth Goel
Andrew Carroll
BMC Bioinformatics (2023)
Improving variant calling using population data and deep learning
Andrew Carroll
Nae-Chyun Chen
Sidharth Goel
BMC Bioinformatics (2023)
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
Zachary R. Mccaw
Nicholas A. Furlotte
Andrew Carroll
Babak Alipanahi
Nature Communications (2022)
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
Andrew Carroll
Babak Alipanahi
Zachary Ryan Mccaw
Nick Furlotte
Nature Communications (2022)
DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer
Aaron Wenger
Andrew Walker Carroll
Armin Töpfer
Ashish Teku Vaswani
Daniel Cook
Felipe Llinares
Gunjan Baid
Howard Cheng-Hao Yang
Jean-Philippe Vert
Kishwar Shafin
Maria Nattestad
Waleed Ammar
William J. Rowell
Nature Biotechnology (2022)
How DeepConsensus Works
Aaron Wenger
Anastasiya Belyaeva
Andrew Carroll
Armin Töpfer
Ashish Teku Vaswani
Daniel Cook
Felipe Llinares
Gunjan Baid
Howard Yang
Jean-Philippe Vert
Kishwar Shafin
Maria Nattestad
Waleed Ammar
William J. Rowell
(2022)
A population-specific reference panel for improved genotype imputation in African Americans
Jared O’Connell
Meghan Moreno
Helen Li
Nadia Litterman
Elizabeth Noblin
Anjali Shastri
Elizabeth H. Dorfman
Suyash Shringarpure
23andMe Research Team
Adam Auton
Andrew Carroll
Communications Biology (2021)
DeepTrio: Variant Calling in Families Using Deep Learning
Gunjan Baid
Howard Yang
Maria Nattestad
Sidharth Goel
bioRxiv (2021)