Taedong Yun
Authored Publications
Sort By
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
Babak Behsaz
Zachary Ryan Mccaw
Davin Hill
Robert Luben
Dongbing Lai
John Bates
Howard Yang
Tae-Hwi Schwantes-An
Yuchen Zhou
Anthony Khawaja
Andrew Carroll
Brian Hobbs
Michael Cho
Nature Genetics (2024)
Preview abstract
Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide association studies (GWAS). REGLE can uncover features not captured by existing expert-defined features and enables the creation of accurate disease-specific polygenic risk scores (PRSs) in datasets with very few labeled data. We apply REGLE to perform GWAS on respiratory and circulatory HDCD—spirograms measuring lung function and photoplethysmograms measuring blood volume changes. REGLE replicates known loci while identifying others not previously detected. REGLE are predictive of overall survival, and PRSs constructed from REGLE loci improve disease prediction across multiple biobanks. Overall, REGLE contain clinically relevant information beyond that captured by existing expert-defined features, leading to improved genetic discovery and disease prediction.
View details
Improving variant calling using population data and deep learning
Andrew Carroll
Nae-Chyun Chen
Sidharth Goel
BMC Bioinformatics (2023)
Preview abstract
Large-scale population variant data is often used to filter and aid interpretation of variant calls in a single sample. These approaches do not incorporate population information directly into the process of variant calling, and are often limited to filtering which trades recall for precision. In this study, we develop population-aware DeepVariant models with a new channel encoding allele frequencies from the 1000 Genomes Project. This model reduces variant calling errors, improving both precision and recall in single samples, and reduces rare homozygous and pathogenic clinvar calls cohort-wide. We assess the use of population-specific or diverse reference panels, finding the greatest accuracy with diverse panels, suggesting that large, diverse panels are preferable to individual populations, even when the population matches sample ancestry. Finally, we show that this benefit generalizes to samples with different ancestry from the training data even when the ancestry is also excluded from the reference panel.
View details
Evaluating unsupervised disentangled representations for genomic discovery and disease risk prediction
ICML Workshop on Computational Biology 2023 (2023)
Preview abstract
High-dimensional clinical data have become invaluable resources for genetic studies, due to their accessibility in biobank-scale datasets and the development of high performance modeling techniques especially using deep learning. Recent work has shown that low dimensional embeddings of these clinical data learned by variational autoencoders (VAE) can be used for genome-wide association studies and polygenic risk prediction. In this work, we consider multiple unsupervised learning methods for learning disentangled representations, namely autoencoders, VAE, beta-VAE, and FactorVAE, in the context of genetic studies. Using spirograms from UK Biobank as a running example, we observed improvements in the genome-wide significant loci, heritability, and polygenic risk scores for asthma and chronic obstructive pulmonary disease compared to VAE or (non-variational) autoencoders. We observed FactorVAEs are consistently effective for genomic discovery and risk prediction across multiple settings of the regularization hyperparameter, while beta-VAEs are much more sensitive to the hyperparameter values.
View details
Improving variant calling using population data and deep learning
Nae-Chyun Chen
Sidharth Goel
Andrew Carroll
BMC Bioinformatics (2023)
Preview abstract
Large-scale population variant data is often used to filter and aid interpretation of variant calls in a single sample. These approaches do not incorporate population information directly into the process of variant calling, and are often limited to filtering which trades recall for precision. In this study, we develop population-aware DeepVariant models with a new channel encoding allele frequencies from the 1000 Genomes Project. This model reduces variant calling errors, improving both precision and recall in single samples, and reduces rare homozygous and pathogenic clinvar calls cohort-wide. We assess the use of population-specific or diverse reference panels, finding the greatest accuracy with diverse panels, suggesting that large, diverse panels are preferable to individual populations, even when the population matches sample ancestry. Finally, we show that this benefit generalizes to samples with different ancestry from the training data even when the ancestry is also excluded from the reference panel.
View details
DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer
Aaron Wenger
Andrew Walker Carroll
Armin Töpfer
Ashish Teku Vaswani
Daniel Cook
Felipe Llinares
Gunjan Baid
Howard Cheng-Hao Yang
Jean-Philippe Vert
Kishwar Shafin
Maria Nattestad
Waleed Ammar
William J. Rowell
Nature Biotechnology (2022)
Preview abstract
Genomic analysis requires accurate sequencing in sufficient coverage and over difficult genome regions. Through repeated sampling of a circular template, Pacific Biosciences developed long (10-25kb) reads with high overall accuracy, but lower homopolymer accuracy. Here, we introduce DeepConsensus, a transformer-based approach which leverages a unique alignment loss to correct sequencing errors. DeepConsensus reduces errors in PacBio HiFi reads by 42%, compared to the current approach. We show this increases the yield of PacBio HiFi reads at Q20 by 9%, at Q30 by 27%, and at Q40 by 90%. With two SMRT cells of HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9Mb to 17.2Mb), increase gene completeness (94% to 97%), reduce false gene duplication rate (1.1% to 0.5%), and improve assembly base accuracy (QV43 to QV45), and also reduce variant calling errors by 24%.
View details
How DeepConsensus Works
Aaron Wenger
Anastasiya Belyaeva
Andrew Carroll
Armin Töpfer
Ashish Teku Vaswani
Daniel Cook
Felipe Llinares
Gunjan Baid
Howard Yang
Jean-Philippe Vert
Kishwar Shafin
Maria Nattestad
Waleed Ammar
William J. Rowell
(2022)
Preview abstract
N/A
These are slides for a public video about DeepConsensus
View details
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
Zachary R. Mccaw
Nicholas A. Furlotte
Andrew Carroll
Babak Alipanahi
Nature Communications (2022)
Preview abstract
Genome-wide association studies (GWASs) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).
View details
DeepNull models non-linear covariate effects to improve phenotypic prediction and association power
Andrew Carroll
Babak Alipanahi
Zachary Ryan Mccaw
Nick Furlotte
Nature Communications (2022)
Preview abstract
Genome-wide association studies (GWAS) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n=370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).
View details
SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression
Steve Yadlowsky
Advances in Neural Information Processing Systems (2021)
Preview abstract
Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. Practical datasets often have a substantial number of features $d$ relative to the sample size $n$. In these cases, the logistic regression maximum likelihood estimator (MLE) is biased, and its standard large-sample approximation is poor. In this paper, we develop an improved method for debiasing predictions and estimating frequentist uncertainty for such datasets. We build on recent work characterizing the asymptotic statistical behavior of the MLE in the regime where the aspect ratio $d / n$, instead of the number of features $d$, remains fixed as $n$ grows. In principle, this approximation facilitates bias and uncertainty corrections, but in practice, these corrections require an estimate of the signal strength of the predictors. Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude. The bias correction that this facilitates also reduces the variance of the predictions, yielding narrower confidence intervals with higher (valid) coverage of the true underlying probabilities and parameters.
View details
DeepTrio: Variant Calling in Families Using Deep Learning
Gunjan Baid
Howard Yang
Maria Nattestad
Sidharth Goel
bioRxiv (2021)
Preview abstract
Every human inherits one copy of the genome from their mother and another from their father. Parental inheritance helps us understand the transmission of traits and genetic diseases, which often involve de novo variants and rare recessive alleles. Here we present DeepTrio, which learns to analyze child-mother-father trio from the joint sequence information, without explicit encoding of inheritance priors. DeepTrio to learn how to weigh sequencing error, mapping error, and de novo rates and genome context directly from the sequence data. DeepTrio has higher accuracy on both Illumina and PacBio HiFi data when compared to DeepVariant. Improvements are especially pronounced at lower coverages (with 20x DeepTrio roughly equivalent to 30x DeepVariant). As DeepTrio learns directly from data, we also demonstrate extensions to exome calling and calling with duos (child and one parent) solely by changing the training data. DeepTrio includes pre-trained models for Illumina WGS, Illumina exome, and PacBio HiFi.
View details