Rolf Jagerman
Research Areas
Authored Publications
Sort By
Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
Minghan Li
Jimmy Lin
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, crossencoder rankers remains under-explored. A recent study shows that current expansion techniques benefit weaker models but harm stronger rankers. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to different crossencoder rankers and verify the deteriorated zero-shot effectiveness. We identify two vital steps in the experiment: high-quality keyword generation and minimally-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by generating keywords through a reasoning chain and aggregating the ranking results of each expanded query via selfconsistency, reciprocal rank weighting, and fusion. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
View details
Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting
Conference of the North American Chapter of the Association for Computational Linguistics (NAACL) (2024)
Preview abstract
Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these challenging ranking formulations. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL 2019&2020, PRP based on the Flan-UL2 model with 20B parameters performs favorably with the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, while outperforming other LLM-based solutions, such as InstructGPT which has 175B parameters, by over 10% for all ranking metrics. By using the same prompt template on seven BEIR tasks, PRP outperforms supervised baselines and outperforms the blackbox commercial ChatGPT solution by 4.2% and pointwise LLM-based solutions by more than 10% on average NDCG@10. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity.
View details
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
Jianmo Ni
Proc. of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (2023)
Preview abstract
Pretrained language models such as BERT have been shown to be exceptionally effective for text ranking. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as a classification problem and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performance. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, ranking models fine-tuned with listwise ranking losses have better zero-shot ranking performance on out-of-domain data than models fine-tuned with classification losses.
View details
RD-Suite: A Benchmark for Ranking Distillation
He Zhang
37th Conference on Neural Information Processing Systems (NeurIPS) (2023)
Preview abstract
The distillation of ranking models has become an important topic in both academia and industry. In recent years, several advanced methods have been proposed to tackle this problem, often leveraging ranking information from teacher rankers that is absent in traditional classification settings. To date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide range of tasks and datasets make it difficult to assess or invigorate advances in this field. This paper first examines representative prior arts on ranking distillation, and raises three questions to be answered around methodology and reproducibility. To that end, we propose a systematic and unified benchmark, Ranking Distillation Suite (RD-Suite), which is a suite of tasks with 4 large realworld datasets, encompassing two major modalities (textual and numeric) and two applications (standard distillation and distillation transfer). RD-Suite consists of benchmark results that challenge some of the common wisdom in the field, and the release of datasets with teacher scores and evaluation scripts for future research. RD-Suite paves the way towards better understanding of ranking distillation, facilities more research in this direction, and presents new challenges.
View details
Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance
Pratyush Kar
Bing-Rong Lin
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (2023)
Preview abstract
As Learning-to-Rank (LTR) approaches primarily seek to improve ranking quality, their output scores are not scale-calibrated by design. This fundamentally limits LTR usage in score-sensitive applications. Though a simple multi-objective approach that combines a regression and a ranking objective can effectively learn scale-calibrated scores, we argue that the two objectives are not necessarily compatible, which makes the trade-off less ideal for either of them. In this paper, we propose a practical regression compatible ranking (RCR) approach that achieves a better trade-off, where the two ranking and regression components are proved to be mutually aligned. Although the same idea applies to ranking with both binary and graded relevance, we mainly focus on binary labels in this paper. We evaluate the proposed approach on several public LTR benchmarks and show that it consistently achieves either best or competitive result in terms of both regression and ranking metrics, and significantly improves the Pareto frontiers in the context of multi-objective optimization. Furthermore, we evaluated the proposed approach on YouTube Search and found that it not only improved the ranking quality of the production pCTR model, but also brought gains to the click prediction accuracy. The proposed approach has been successfully deployed in the YouTube production system.
View details
On Optimizing Top-K Metrics for Neural Ranking Models
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (2022), 2303–2307
Preview abstract
Top-K metrics such as NDCG@K are frequently used to evaluate ranking performance.
The traditional tree-based models such as LambdaMART, which are based on Gradient Boosted Decision Trees (GBDT), are designed to optimize NDCG@K using the LambdaRank losses.
Recently, there is a good amount of research interest on neural ranking models for learning-to-rank tasks. These models are fundamentally different from the decision tree models and behave differently with respect to different loss functions. For example, the most popular ranking losses used in neural models are the Softmax loss and the GumbelApproxNDCG loss.
These losses do not connect to top-K metrics such as NDCG@K naturally. It remains a question on how to effectively optimize NDCG@K for neural ranking models. In this paper, we follow the LambdaLoss framework and design novel and theoretically sound losses for NDCG@K metrics, while the original LambdaLoss paper can only do so using an unsound heuristic. We study the new losses on the LETOR benchmark datasets and show that the new losses work better than other losses for neural ranking models.
View details
Rax: Composable Learning-to-Rank using JAX
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022), 3051–3060
Preview abstract
Rax is a library for composable Learning-to-Rank (LTR) written entirely in JAX. The goal of Rax is to facilitate easy prototyping of LTR systems by leveraging the flexibility and simplicity of JAX. Rax provides a diverse set of popular ranking metrics and losses that integrate well with the rest of the JAX ecosystem. Furthermore, Rax implements a system of ranking-specific function transformations which allows fine-grained customization of ranking losses and metrics. Most notably Rax provides approx_t12n: a function transformation (t12n) that can transform any of our ranking metrics into an approximate and differentiable form that can be optimized. This provides a systematic way to directly optimize neural ranking models for ranking metrics that are not easily optimizable in other libraries. We empirically demonstrate the effectiveness of Rax by benchmarking neural models implemented using Flax and trained using Rax on two popular LTR benchmarks: WEB30K and Istella. Furthermore, we show that integrating ranking losses with T5, a large language model, can improve overall ranking performance on the MS MARCO passage ranking task. We are sharing the Rax library with the open source community as part of the larger JAX ecosystem at https://github.com/google/rax.
View details
Bootstrapping Recommendations at Chrome Web Store
Po Hu
Chary Chen
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2021)
Preview abstract
We describe how we built three recommendation products from scratch at Google Chrome Web Store, namely context-based recommendations, related extension recommendations, and personalized recommendations. Unlike most existing papers that focus on novel algorithms, this paper focuses on sharing practical experiences building large scale recommender systems under various real-world constraints, such as privacy constraints, data sparsity issues, highly skewed data distribution, and product design choices, such as user interface. We show how these constraints make standard approaches difficult to succeed in practice. We share success stories that turn very negative live metrics to very positive, by introducing 1) how we use interpretable neural models to bootstrap the systems, helps identifying pipeline issues, and paves way for more advanced models. 2) A new item-item based recommendation algorithm that works under highly skewed data distributions, and 3) how two products can help bootstrapping the third one, which significantly reduces development cycles and bypasses various real-world difficulties. All the explorations in this work are verified in live traffic on millions of users. We believe the findings in this work can help practitioners to bootstrap and build large-scale recommender systems.
View details
Improving Cloud Storage Search with User Activity
Proceedings of the 14th International Conference on Web Search and Data Mining (WSDM '21), ACM (2021)
Preview abstract
Cloud-based file storage platforms such as Google Drive are widely used as a means for storing, editing and sharing personal and organizational documents. In this paper, we improve search ranking quality for cloud storage platforms by utilizing user activity logs. Different from search logs, activity logs capture general document usage activity beyond search, such as opening, editing and sharing documents. We propose to automatically learn text embeddings that are effective for search ranking from activity logs. We develop a novel co-access signal, i.e., whether two documents were accessed by a user around the same time, to train deep semantic matching models that are useful for improving the search ranking quality. We confirm that activity-trained semantic matching models can improve ranking by conducting extensive offline experimentation using Google Drive search and activity logs. To the best of our knowledge, this is the first work to examine the benefits of leveraging document usage activity at large scale for cloud storage search; as such it can shed light on using such activity in scenarios where direct collection of search-specific interactions (e.g., query and click logs) may be expensive or infeasible.
View details