Roee Aharoni

Roee Aharoni

Roee Aharoni is a Research Scientist at Google Tel Aviv, working on natural language processing.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses. View details
    Preview abstract Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains — in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/. View details
    q2d: Automatic Dialog Generation to Improve Models' Query Generation
    Enav Weinreb
    Ido Hakimi
    Shlomi Cohen-Ganor
    Yoad Lewenberg
    EMNLP 2023 (2023)
    Preview abstract We propose q2d: an automatic data generation pipeline that generates information-seeking dialogues based on questions. We apply our method to create conversational versions of questions answering datasets, which we release as a new dataset. We use this data to improve query generation models, which communicate with an external search APIs to generate factual responses. Unlike previous approaches, which relied on human annotators, our method allows to automatically generate labeled dialogues with better control and scale. In experiments, we demonstrate that: (1) Models trained on our synthetic data produce results comparable to those trained on natural data; (2) Our generated datasets are effective as a benchmark and as a training signal that generalizes to human-annotated test sets. We also provide an extensive analysis of the quality and factuality of the generated datasets. Our studies indicate that our automatic dialogue generation pipeline is effective at improving query generation and factuality. View details
    Preview abstract We introduce Seahorse (SummariEs Annotated with Human Ratings in Six languagEs), a dataset of 96K summaries with ratings along 6 dimensions (comprehensibility, repetition, grammar, attribution, main idea(s), and conciseness). The summaries are generated from 8 different models, conditioned on source text from 4 datasets in 6 languages (German, English, Spanish, Russian, Turkish, and Vietnamese). We release the annotated summaries as a resource for developing better summarization models and automatic metrics. We present an analysis of the dataset's composition and quality, and we demonstrate the potential of this dataset for building better summarization metrics, showing that metrics finetuned with Seahorse data outperform baseline metrics. View details
    q2d: Turning Questions into Dialogs to Teach Models How to Search
    Shlomi Cohen-Ganor
    Ido Hakimi
    Yoad Lewenberg
    Enav Weinreb
    arXiv (2023)
    Preview abstract One of the exciting capabilities of recent language models for dialog is their ability to independently search for relevant information to ground a given dialog response. However, obtaining training data to teach models how to issue search queries is time and resource consuming. In this work, we propose q2d: an automatic data generation pipeline that generates information-seeking dialogs from questions. We prompt a large language model (PaLM) to create conversational versions of question answering datasets, and use it to improve query generation models that communicate with external search APIs to ground dialog responses. Unlike previous approaches which relied on human written dialogs with search queries, our method allows to automatically generate query-based grounded dialogs with better control and scale. Our experiments demonstrate that: (1) For query generation on the QReCC dataset, models trained on our synthetically-generated data achieve 90%--97% of the performance of models trained on the human-generated data; (2) We can successfully generate data for training dialog models in new domains without any existing dialog data as demonstrated on the multi-hop MuSiQue and Bamboogle QA datasets. (3) We perform a thorough analysis of the generated dialogs showing that humans find them of high quality and struggle to distinguish them from human-written dialogs. View details
    Preview abstract Factual consistency evaluation is often conducted using Natural Language Inference (NLI) models, yet these models exhibit limited success in evaluating summaries. Previous work improved such models with synthetic training data. However, the data is typically based on perturbed human-written summaries, which often differ in their characteristics from real model-generated summaries and have limited coverage of possible factual errors. Alternatively, large language models (LLMs) have recently shown promising results in directly evaluating generative tasks, but are too computationally expensive for practical use. Motivated by these limitations, we introduce TrueTeacher, a method for generating synthetic data by annotating diverse model-generated summaries using a LLM. Unlike prior work, TrueTeacher does not rely on human-written summaries, and is multilingual by nature. Experiments on the TRUE benchmark show that a student model trained using our data, substantially outperforms both the state-of-the-art model with similar capacity, and the LLM teacher. In a systematic study, we compare TrueTeacher to existing synthetic data generation methods and demonstrate its superiority and robustness to domain-shift. We also show that our method generalizes to multilingual scenarios using the mFACE dataset. Finally, we release a large-scale synthetic dataset with 1.4M examples generated using TrueTeacher. View details
    Preview abstract A growing area of research investigates augmenting language models with tools (e.g., search engines, calculators) to overcome their shortcomings (e.g., missing or incorrect knowledge, incorrect logical inferences). Various few-shot tool-usage strategies have been proposed. However, there is no systematic and fair comparison across different strategies, or between these strategies and strong baselines that do not leverage tools. We conduct an extensive empirical analysis, finding that (1) across various datasets, example difficulty levels, and models, strong no-tool baselines are competitive to tool-assisted strategies, implying that effectively using tools with in-context demonstrations is a difficult unsolved problem; (2) for knowledge-retrieval tasks, strategies that *refine* incorrect outputs with tools outperform strategies that retrieve relevant information *ahead of* or *during generation*; (3) tool-assisted strategies are expensive in the number of tokens they require to work -- incurring additional costs by orders of magnitude -- which does not translate into significant improvement in performance. Overall, our findings suggest that few-shot tool integration is still an open challenge, emphasizing the need for comprehensive evaluations of future strategies to accurately assess their *benefits* and *costs*. View details
    Factually Consistent Summarization via Reinforcement Learning with Textual Entailment Feedback
    Paul Roit
    Johan Ferret
    Geoffrey Cideron
    Matthieu Geist
    Sertan Girgin
    Léonard Hussenot
    Nikola Momchev
    Piotr Stanczyk
    Nino Vieillard
    Olivier Pietquin
    Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics (2023), 6252–6272
    Preview abstract Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input. This phenomenon is emphasized in tasks like summarization, in which the generated summaries should be corroborated by their source article. In this work we leverage recent progress on textual entailment models to directly address this problem for abstractive summarization systems. We use reinforcement learning with reference-free, textual-entailment rewards to optimize for factual consistency and explore the ensuing trade-offs, as improved consistency may come at the cost of less informative or more extractive summaries. Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience and conciseness of the generated summaries. View details
    Preview abstract Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic image-text alignment evaluation. We first introduce a comprehensive evaluation set spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach based on synthetic data generation. Both methods surpass prior approaches in various text-image alignment tasks, with our analysis showing significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation. View details
    Preview abstract Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?). View details